

Revisão 1.1 Outubro/2025

Sumário

1.	OBJ	ETIVO	3
2.	DET	ALHES DO PROTOCOLO MODBUS	3
3.		D HOLDING REGISTERS (0X03H)	
٦.			
	3.1	BLOCO PADRÃO:	
	3.2	CONFIGURAÇÕES ESPECIAIS	
	3.3 3.4	THRESHOLD DO HORÍMETRO: DEBOUNCE DAS EDPS:	_
	3.5	RTC:	
	3.6	MEMORIA DE MASSA:	-
	3.7	CONFIGURAÇÃO DA SEQUÊNCIA DE PONTO FLUTUANTE:	
	3.8	CONFIGURAÇÃO BLUETOOTH:	
	3.9	CONFIGURAÇÃO REDE ETHERNET (PARA KONECT 120, KONECT PLUS, KONECT GRAFIC, KONECT RW, KONECT	
	PLUS R\	W E KONECT GRAFIC RW);:	
	3.10	CONFIGURAÇÃO WI-FI (PARA KONECT 120, KONECT PLUS, KONECT GRAFIC, KONECT RW, KONECT PLUS RW	
	KONECT	GRAFIC RW)	9
	3.11	CONFIGURAÇÃO WI-FI (PARA KONECT 05 E KS-3000),:	9
	3.12	CONFIGURAÇÃO SSID E SENHA DA REDE WI-FI:	
	3.13	CONFIGURAÇÃO SNTP:	9
	3.14	CONFIGURAÇÃO DAS GRANDEZAS PARA MEMÓRIA DE MASSA E PLATAFORMA MQTT:	
	3.15	CONFIGURAÇÃO MQTT:	
	3.16	CONFIGURAÇÃO LORA:	
	3.17	QUANTIDADE DE BLOCOS A SEREM RETRANSMITIDOS VIA MQTT	
	3.18	QUANTIDADE DE BLOCOS A SEREM RETRANSMITIDOS VIA LORA	
	3.19	CONFIGURAÇÃO DE ALARME (CURVA DE CARGA)	
	3.20	QUANTIDADE DE BLOCOS A SEREM RETRANSMITIDOS VIA LORA	
	3.21	CONFIGURAÇÃO DOS LIMITES DE ALARME E HISTERESE	
	3.22 3.23	CONFIGURAÇÃO MULTI-TARIFAÇÃO	
	3.24	CONFIGURAÇÃO MULTI-TARIFAÇÃO	
	3.25	CONFIGURAÇÃO MOLTI-TANIFAÇÃO CONFIGURAÇÕES DOS HORÁRIOS DE FECHAMENTO DO PERÍODO (MULTI-TARIFAÇÃO)	
	3.26	CONFIGURAÇÕES DOS TORAMOS DE LECHAMIENTO DO LEMODO (MOLTI TAMITAÇÃO)	
	3.27	CONFIGURAÇÃO DE CONTROLE DE CONSUMO	
	3.28	Configuração das Grandezas Monitoradas.	
	3.29	Configuração dos limites de Alarme e Histerese	
4.	INIDI	JT REGISTERS (0X04H)	
4.	INP		
	4.1	GRANDEZAS:	
	4.2	GRUPO DE MÍNIMOS E MÁXIMOS:	
	4.3	CÓDIGOS DE ERRO:	
	4.4	IDENTIFICAÇÃO DOS CÓDIGOS DE ERRO:	
	4.5	IDENTIFICAÇÃO DOS CÓDIGOS DE ERRO DO MÓDULO WI-FI:	
	4.6	IDENTIFICAÇÃO DOS CÓDIGOS DE ERRO DO MÓDULO LORA:	
	4.7	Intensidade do sinal (RSSI) do último downlink Lora.:	
	4.8	STATUS MULTI-TARIFAÇÃO.:	
	4.9	DATA/HORA DO ÚLTIMO FECHAMENTO DE PERÍODO (MULTI-TARIFAÇÃO):	
	4.10	ENERGIAS E DEMANDAS - PERÍODO 1 - FECHADO (MULTI-TARIFAÇÃO):	
	4.11 4.12	ENERGIAS E DEMANDAS - PERÍODO 2 - ANDAMENTO (MULTI-TARIFAÇÃO): CONTADORES PARCIAIS DE CONTROLE DE CONSUMO:	
	4.12 4.13	CONTADORES PARCIAIS DE CONTROLE DE CONSUMO:	

Revisão 1.1 Outubro/2025

4.14	MAC Address da rede Ethernet:	30
4.15	MAC Address WiFi:	30
4.16	BLUETOOTH:	
4.17		
5. FO	PRCE SINGLE COIL (05)	32
6. RE	AD INPUT STATUS	34
7. CC	ONFIGURAÇÃO E LEITURA DA MEMÓRIA DE MASSA	35
7.1	PROGRAMAÇÃO DO RELÓGIO	
7.1	PROGRAMAÇÃO DO INTERVALO DE ARMAZENAMENTO	
7.2 7.3	PROGRAMAÇÃO DAS GRANDEZAS ARMAZENADAS	
_		
7.4 7.5	Modo de Armazenamento da Memória de Massa (Circular/Linear) Procedimento de Leitura da Memória de Massa	
_	ESET MULTIPLE REGISTER (16)	
9. RE	PORT SLAVE ID (17)	45
10.	CONFIG ADDRESS (0/0X42)	46
11.	CONVERSÃO IEE-754 FLOAT POINT 32-BIT PARA DECIMAL	47

1. OBJETIVO

Descrever as características gerais dos medidores Konect 120, Konect Plus, Konect Grafic, Konect 05, Konect RW, Konect Plus RW, Konect Grafic RW e KS-3000 com relação ao Protocolo MODBUS.

2. <u>DETALHES DO PROTOCOLO MODBUS</u>

A seguir, formatos e velocidades disponíveis para transmissão de dados (RS-485).

FORMATO	TOTAL DE BITS	OBS
8N1 (1 start bit, 8 bits de dados, 1 stop bit)	10	=
8N2 (1 start bit, 8 bits de dados, 2 stop bits)	11	-
8E1 (1 start bit, 8 bits de dados, 1 bit de paridade, 1 stop bit)	11	Paridade par
801 (1 start bit, 8 bits de dados, 1 bit de paridade, 1 stop bit)	11	Paridade ímpar

VELOCIDADE
9600 bps
19200 bps
38400 bps (futuro)
57600 bps (futuro)

O usuário pode configurar os parâmetros de comunicação serial através da IHM ou via interface serial. Para Modbus TCP podem ser abertos até 2 sockets simultaneamente. A porta utilizada no Modbus TCP é a 502, e o Slave ID padrão, 255. A distribuição dos sockets pode ser realizada da seguinte forma:

- 1 Wi-Fi e 1 Ethernet;
- 2 Wi-Fi;
- 2 Ethernet;

É possível o uso dos três meios de comunicação (Wi-Fi, Ethernet e Bluetooth) simultaneamente, porém recomendamos a desativação das redes não utilizadas através do Holding Register 40.020* (Configurações especiais), pois caso o Wi-Fi esteja ativado, porém com uma senha inválida de uma rede existente será feita uma tentativa de conexão a cada 60 segundos, o que pode causar erros nas comunicações Modbus via ETH ou Bluetooth.

Funções MODBUS:

As funções do protocolo MODBUS implementadas, são:

•	Read Input Status	(2)
•	Read Holding Register	(3)
•	Read Input Register	(4)
•	Force Single Coil *	(5)
•	Preset Single Register *	(6)
•	Read Exception Status	(7)
•	Preset Multiple Register *	(16)
•	Report Slave ID	(17)
•	Read File Record	(20)

^{*} Broadcast - funções que podem ser endereçadas para todos os slaves (endereço 0)

Funções ESPECIAIS:

•	Config Address	(00/42H)
•	Read Address	(00/71H)
•	Config № Serie	(00/72H)
•	Read Partidas	(00/75H)
•	Report Slave Id Kron	(00/76H)
•	Read Nº Serie	(00/77H)
•	Config Dispositivo	(00/78H)
•	Read Config Dispositivo	(00/79H)

3. READ HOLDING REGISTERS (OXO3H)

Podem ser lidos via função "Read Holding Register (3)" e escritos via funções "Preset Single Register (6)" ou "Preset Multiple Register (16)". No máximo podem ser lidos 32 registros e podem ser escritos 22 registros para cada requisição.

3.1 Bloco Padrão

São os registros de configuração do instrumento disponíveis para o usuário configurar.

ENDEREÇO DESCRIÇÃO		FORMATO	RANGE (MIN – MÁX)
40.001, 40.002 TP I		IEEE 32-bit fp (F2,F1), (F0,EXP)	0,01 – 9999,99
40.003, 40.004 TC		IEEE 32-bit fp (F2,F1), (F0,EXP)	0,01 – 9999,99
40.005 KE (Relação Watt-horas por pulso) l		Unsigned int 16-bit	0 – 65535
40.006 TL e TI		Unsigned int 8-bit (MSB) / Unsigned int 8-bit (LSB)	00 - 80 / 00 - 60
40.007	Configurações	*	*

^{*} Através do Holding Register 40.007 (Configurações) é possível realizar as seguintes configurações:

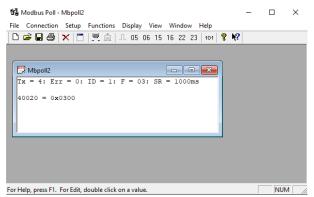
D15 D14 D13 D12 D11 D10 D9 D8	D7 D6	D5 D4 D3	D2 D1 D0
--------------------------------------	-------	----------	----------

			1			
BIT	DESCRIÇÃO	VALORES		BIT	DESCRIÇÃO	VALORES
D15	Sentido da Corrente	0: Sentido Normal 1: Sentido invertido		D7	Reservado	0
D14	Configuração DNS	0: DNS desabilitado 1: DNS habilitado		D6	Reservado	0
D13	Configuração Plataforma MQTT	0: MQTT desabilitado 1: MQTT habilitado		D5	Configuração de IP WiFi	0: Estático 1: DHCP
D12	Configuração de SNTP	0: Sincronismo desabilitado 1: Sincronismo Habilitado		D4-D3	Formato de dados	00: 8N1 01: 8N2 10: 8E1 11: 8O1
D11	Configuração IP Ethernet	0: Estático 1: DHCP		D2-D0	Baudrate	000: 9.600 001: 19.200 010: 38.400 (futuro) 011: 57600 (futuro) 100: 115.200 (futuro)
D10	Desconecta do Broker se IA ≥ 10 minutos	O: Mantém conectado após o envio de um frame. 1: Reconecta ao broker a cada vez que for fazer o envio de um frame				
D9	Tipo de buffer de armazenamento da Memória de Massa	0: Circular 1: Linear				
D8	Reservado	0				

Revisão 1.1 Outubro/2025

3.2 Configurações especiais

Através do Holding Register 40.020 (Configurações especiais) é possível realizar as seguintes configurações:


D15 D14 D13 D12 D11 D10 D9 D8
--

D7 D6 D5 D4 D3 D2 D1 D0
--

BIT	DESCRIÇÃO	VALORES
D13-D15	Reservado	0
D11-D12	Seleção do Broker	00: Padrão (AWS, Tago, CloudMQTT, Mosquitto etc).01: IBM10: Azure11: Wegnology
D10	TLS	0: TLS habilitado 1: TLS desabilitado
D9	Bluetooth	0: Sincronismo desabilitado 1: Sincronismo Habilitado
D8	WiFi	0: Estático

BIT	DESCRIÇÃO	VALORES
D7	Ethernet	0: ETH habilitado 1: ETH desabilitado
D0-D6	Reservado	0

* As alterações só surtirão efeito quando o aparelho for reinicializado

Exemplo de configuração com WiFi e Bluetooth desativados

Revisão 1.1 Outubro/2025

3.3 Threshold do horímetro:

Os holding registers abaixo são utilizados para definir a **corrente** a partir da qual a função horímetro será disparada, ou seja, para iniciar o contador de horas, é preciso que a corrente medida seja maior ou igual ao valor ajustado nestes registros.

ENDEREÇO	DESCRIÇÃO	FORMATO	RANGE (MIN – MÁX)
40.161, 40.162	Threshold Horímetro	IEEE 32-bit fp (F2,F1), (F0,EXP)	0,01 – 9999,99

3.4 Debounce das EDPs:

	ENDEREÇO	DESCRIÇÃO	FORMATO	RANGE (MIN – MÁX)
I	40.171	Debounce das EDPs (em milissegundos) *	Unsigned 16-bit	10 – 1000 (Default = 50)

^{*} Se for gravado um valor de debounce incorreto, ficará gravado o valor default (50ms).

3.5 RTC:

Exemplo: 25/03/10 - 13:24:07:96 (04 = quarta-feira).

HOLDING REGISTER	VALOR	SIGNIFICADO
42.001	0x9607	CENTÉSIMO e SEGUNDO
42.002	0x2413	MINUTO e HORA
42.003	0x0425	DIA DA SEMANA e DIA
42.004	0x0310	MÊS e ANO

DIA DA SEMANA	VALOR
Domingo	01
Segunda-feira	02
Terça-feira	03
Quarta-feira	04
Quinta-feira	05
Sexta-feira	06
Sábado	07

ATENÇÃO: Diferentemente do Konect 63A, onde o valor 01 do dia da semana é segunda-feira, na linha Konect 120, Konect 05, Konect Plus, Konect Grafic, KS-3000, Konect RW, Konect Plus RW e Konect Grafic RW o valor 01 é domingo.

O valor deste registro pode variar de 10 a 1000, ou seja, 10ms a 1000ms.

O debouce vale tanto para detectar a borda de subida quanto a borda de descida.

Revisão 1.1 Outubro/2025

3.6 Memoria de Massa:

ENDEREÇO	DESCRIÇAO	FORMATO
42.101	Intervalo de Armazenamento/envio	Unsigned int 16-bit
42.102	Grandeza 1	Unsigned int 16-bit
42.103	Grandeza 2	Unsigned int 16-bit
42.104	Grandeza 3	Unsigned int 16-bit
42.105	Grandeza 4	Unsigned int 16-bit
42.106	Grandeza 5	Unsigned int 16-bit
42.107	Grandeza 6	Unsigned int 16-bit
42.108	Grandeza 7	Unsigned int 16-bit
42.109	Grandeza 8	Unsigned int 16-bit
42.110	Grandeza 9	Unsigned int 16-bit
42.111	Grandeza 10	Unsigned int 16-bit
42.112	Grandeza 11	Unsigned int 16-bit
42.113	Grandeza 12	Unsigned int 16-bit
42.114	Grandeza 13	Unsigned int 16-bit
42.115	Grandeza 14	Unsigned int 16-bit
42.116	Grandeza 15	Unsigned int 16-bit
42.117	Grandeza 16	Unsigned int 16-bit
42.118	Grandeza 17	Unsigned int 16-bit
42.119	Grandeza 18	Unsigned int 16-bit
42.120	Grandeza 19	Unsigned int 16-bit
42.121	Grandeza 20	'Unsigned int 16-bit

3.7 Configuração da sequência de ponto flutuante:

A sequência de envio das grandezas elétricas no formato ponto flutuante pode ser configurada no Holding Register 42.901. Na inicialização do aparelho e no instante de enviar a grandeza no formato ponto flutuante, ocorrerá uma verificação no valor destes Holding Registers. Somente será permitida a combinação entre os valores 0, 1, 2 e 3, sem repetição. Sempre que houver um valor inválido, a configuração padrão KRON será gravada na memória nestes Holding Registers.

ENDEREÇO	DESCRIÇÃO	FORMATO	RANGE (MIN – MÁX)
42.901	Sequência do Ponto Flutuante	Unsigned int 8-bit (LSB) / Unsigned int 8-bit (MSB)	0 – 65535

Exemplo:

42.901 (MSB, LSB)	DISPOSIÇÃO	ORDENAÇÃO DE BYTES	MODO DE SWAP	COMENTÁRIO
0x32, 0x10	F2, F1, F0, EXP	DCBA	Word	Padrão KRON
0x23, 0x01	F1, F2, EXP, F0	CDAB	Byte e word	Float
0x01, 0x23	EXP, F0, F1, F2	ABCD	Sem	Float inverse
0x10, 0x32	F0, EXP, F2, F1	BADC	Byte	Padrão Kron inverse

Revisão 1.1 Outubro/2025

3.8 Configuração Bluetooth:

ENDEREÇO	QTDE MÁXIMA DE CARACTERES (BYTES)	DESCRIÇÃO	FORMATO
43.001 a 43.008	16	Descrição do Módulo Bluetooth.	ASCII
43.011 a 43.018	16	Senha de Autenticação do Módulo Bluetooth	ASCII

Em cada registro serão enviados dois caracteres ASCII. O último caractere da string deve ser sempre 0x00 para identificar o fim da string. Se não forem utilizados todos os caracteres, os dados enviados após o 0x00 serão ignorados.

Por exemplo:

Para escrever a Descrição "Mult-k NG" (sem aspas).

43.001 = 0x4D75

43.002 = 0x6C74

43.003 = 0x2D6B

43.004 = 0xA04E

43.005 = 0x4700

Neste caso, como a descrição tem menos que 15 caracteres, o usuário deverá escrever qualquer valor nos registros 43.006 a 43.008, já que esses serão ignorados devido ao valor 0x00 no byte menos significativo do registro 43.005. Este valor 0x00 indica o fim da string.

Observação1: Não é possível ler ou escrever somente em parte dos registros. É necessário ler todos os registros de uma só vez. Por exemplo, se o usuário quiser ler somente os quatro primeiros caracteres da descrição, ele não conseguirá ler somente os registros 43.001 a 43.002. O mesmo serve para os registros da Senha de Autenticação.

Observação2: Para que as alterações das configurações acima sejam realizadas, deverá ser enviado um Coil de Reset do Aparelho após enviar os comandos acima, pois essa alteração só é possível de ser feita na Inicialização do Módulo Bluetooth.

3.9 Configuração rede Ethernet (Para Konect 120, Konect Plus, Konect Grafic, Konect RW, Konect Plus RW e Konect Grafic RW),:

Utilizados para configurar o endereço IP do equipamento, máscara de sub-rede e o Gateway Padrão. Sendo que as novas configurações só passam a valer após o reset do medidor (necessário envio do Coil de reset após a configuração).

ENDEREÇO	DESCRIÇÃO	FORMATO
43.101 a 43.102	Endereço IP do medidor	Uint 8-bit (LSB)/uint 8-bit/uint 8-bit/uint 8-bit (MSB)
43.103 a 43.104	Máscara de sub-rede	Uint 8-bit (LSB)/uint 8-bit/uint 8-bit/uint 8-bit (MSB)
43.105 a 43.106	Gateway padrão	Uint 8-bit (LSB)/uint 8-bit/uint 8-bit/uint 8-bit (MSB)

Revisão 1.1 Outubro/2025

3.10 Configuração Wi-Fi (Para Konect 120, Konect Plus, Konect Grafic, Konect RW, Konect Plus RW e Konect Grafic RW)

Utilizados para configurar o endereço IP do equipamento, máscara de sub-rede e o Gateway Padrão. Sendo que as novas configurações só passam a valer após o reset do medidor (necessário envio do Coil de reset após a configuração).

ENDEREÇO	DESCRIÇÃO	FORMATO
43.111 a 43.112	Endereço IP do medidor	Uint 8-bit (LSB)/uint 8-bit/uint 8-bit/uint 8-bit (MSB)
43.113 a 43.114	Máscara de sub-rede	Uint 8-bit (LSB)/uint 8-bit/uint 8-bit/uint 8-bit (MSB)
43.115 a 43.116	Gateway padrão	Uint 8-bit (LSB)/uint 8-bit/uint 8-bit/uint 8-bit (MSB)
43.117 a 43.118	Endereço Servidor DNS	Uint 8-bit (LSB)/uint 8-bit/uint 8-bit/uint 8-bit (MSB)

Observação: Rede Ethernet e rede Wi-Fi utilizam o mesmo servidor DNS.

3.11 Configuração Wi-Fi (Para Konect 05 e KS-3000),:

Utilizados para configurar o endereço IP do equipamento, máscara de sub-rede e o Gateway Padrão. Sendo que as novas configurações só passam a valer após o reset do medidor (necessário envio do Coil de reset após a configuração).

ENDEREÇO	DESCRIÇÃO	FORMATO
43.101 a 43.102	Endereço IP do medidor	Uint 8-bit (LSB)/uint 8-bit/uint 8-bit/uint 8-bit (MSB)
43.103 a 43.104	Máscara de sub-rede	Uint 8-bit (LSB)/uint 8-bit/uint 8-bit/uint 8-bit (MSB)
43.105 a 43.106	Gateway padrão	Uint 8-bit (LSB)/uint 8-bit/uint 8-bit/uint 8-bit (MSB)
43.107 a 43.108	Endereço Servidor DNS	Uint 8-bit (LSB)/uint 8-bit/uint 8-bit/uint 8-bit (MSB)

3.12 Configuração SSID e senha da rede Wi-Fi:

ENDEREÇO	QTDE MÁXIMA DE CARACTERES (BYTES)	DESCRIÇÃO	FORMATO
43.121 a 43.135	30	SSID da Rede Wi-Fi	ASCII
43.161 a 43.175	30	Senha da Rede Wi-Fi	ASCII

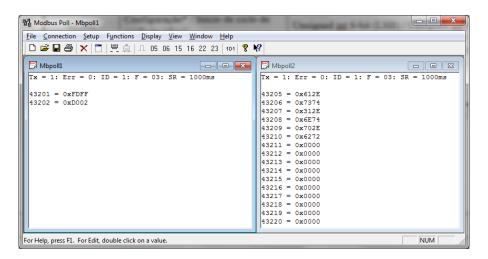
O último caractere de cada string deve ser sempre 0x00 para identificar o fim da mesma. Se não forem utilizados todos os caracteres, os dados enviados após o 0x00 serão ignorados.

3.13 Configuração SNTP:

Utilizados para configurar o fuso horário, intervalo de sincronismo e o nome ou IP do servidor de tempo. Sendo que as novas configurações só passam a valer após o reset do medidor (necessário envio do Coil de reset após a configuração).

ENDEREÇO	DESCRIÇÃO	FORMATO	RANGE (MIN – MÁX)
43.201*	Fuso horário	Int 16-bit (LSB, MSB)	-12 à +12 horas
43.202**	Intervalo de sincronismo	Uint 16-bit (LSB, MSB)	0 a 65.535 minutos

Revisão 1.1 Outubro/2025


ENDEREÇO	QTDE MÁXIMA DE CARACTERES (BYTES)	DESCRIÇÃO	FORMATO
43.205 a 43.220	32	Nome ou IP do servidor de tempo	ASCII

- * Caso o fuso horário seja configurado fora do range especificado, o equipamento irá assumir fuso horário igual a zero.
- ** Se o intervalo de sincronismo for configurado como zero, o sincronismo com o servidor de tempo fica desabilitado, independente da configuração feita no registro 40.007.

Abaixo exemplo de configuração dos registros para:

- Fuso-horário = -3
- Int. de sincronismo = 720 minutos
- Servidor SNTP = "a.st1.ntp.br"

•

3.14 Configuração das grandezas para memória de massa e plataforma MQTT:

ENDEREÇO	DESCRIÇÃO	FORMATO
42.101	Intervalo de Armazenamento/envio	Unsigned int 16-bit
42.102	Grandeza 1	Unsigned int 16-bit
42.103	Grandeza 2	Unsigned int 16-bit
42.104	Grandeza 3	Unsigned int 16-bit
42.105	Grandeza 4	Unsigned int 16-bit
42.106	Grandeza 5	Unsigned int 16-bit
42.107	Grandeza 6	Unsigned int 16-bit
42.108	Grandeza 7	Unsigned int 16-bit
42.109	Grandeza 8	Unsigned int 16-bit
42.110	Grandeza 9	Unsigned int 16-bit
42.111	Grandeza 10	Unsigned int 16-bit
42.112	Grandeza 11	Unsigned int 16-bit
42.113	Grandeza 12	Unsigned int 16-bit
42.114	Grandeza 13	Unsigned int 16-bit
42.115	Grandeza 14	Unsigned int 16-bit
42.116	Grandeza 15	Unsigned int 16-bit
42.117	Grandeza 16	Unsigned int 16-bit
42.118	Grandeza 17	Unsigned int 16-bit
42.119	Grandeza 18	Unsigned int 16-bit
42.120	Grandeza 19	Unsigned int 16-bit
42.121	Grandeza 20	Unsigned int 16-bit

Revisão 1.1 Outubro/2025

<u>Observação</u>: Somente as 10 primeiras grandezas (até o registro 42.111) serão consideradas quando o meio de comunicação for LoRa.

Para programar uma grandeza, o Holding Register deve ser gravado com o endereço Modbus da mesma, subtraído de 30.001. A seguir, alguns exemplos:

ENDEREÇO MODBUS	REG.	DESCRIÇÃO	PROGRAMAÇÃO HR
30.003	U0	Tensão Trifásica	(30.003-30.001) = 2
30.005	U12	Tensão Fase/Fase	(30.005-30.001) = 4
30.201	EA+	Energia Ativa Positiva	(30.201-30.001) = 200
33.001	UAN THD	THD da Tensão da fase 1	(33.001-30.001) = 3000
30.095	EDP-1	Contador da EDP-1	(30.095-30.001) = 94

Os códigos, já pré-calculados, estão disponíveis na tabela de input registers (capítulo 4).

Caso um dos registros seja programado com valor inválido, este e os seguintes serão desconsiderados. Se houver um valor inválido logo no primeiro registro, o instrumento considerará apenas uma grandeza programada (Energia Ativa Positiva).

3.15 Configuração MQTT:

ENDEREÇO	QTDE MÁXIMA DE CARACTERES (BYTES)	DESCRIÇÃO	FORMATO
43.461 a 43.495	70	URL do Broker MQTT	ASCII
43.496 a 43.498	6	Porta do Broker MQTT	ASCII
43.499 a 43.517	38	Username	ASCII
43.518 a 43.552	70	Token	ASCII
43.553 a 43.565	26	Nome/Descrição do Medidor	ASCII
43.566 a 43.595	60	Tópico de Publicação	ASCII

Os registros de token, nome do medidor, URL e porta do broker e Username devem ser enviados no formato ASCII. O último caractere de cada string deve ser sempre 0x00 para identificar o fim da mesma. Se não forem utilizados todos os caracteres, os dados enviados após o 0x00 serão ignorados. Não é necessário enviar 0x00 se o dado ocupar todo o espaço reservado a ele.

Observação1: Deve-se lembrar que é permitido ler no máximo 32 Holding Registers e escrever no máximo 22 Holding Registers de uma só vez. Portanto, a leitura e escrita da faixa que começa a partir do registro 43.461 deve ser fracionada.

Observação2: Para que as alterações das configurações acima sejam realizadas, deverá ser enviado um Coil de Reset do Aparelho após enviar os comandos acima, pois essa alteração só é possível de ser feita na inicialização do equipamento.

Revisão 1.1 Outubro/2025

3.16 Configuração LoRa:

ENDEREÇO	DESCRIÇÃO	FORMATO
43.612 a 43.615	Device EUI *	HEX
43.616 a 43.619	Application EUI	HEX
43.620 a 43.627	Application Key	HEX
43.628 a 43.635	Network Session Key	HEX
43.636 a 43.643	Application Session Key	HEX
43.644 a 43.645	Device Address	HEX
43.646	Configurações Gerais Lora **	HEX
43.647	Timer para envio do comando Link Check (em horas)***	Unsigned int 16-bit

^{*} O registro "Device EUI" contém o número de identificação único do módulo LoRa (formato HEX). Portanto, esse registro não poderá ser alterado (somente leitura).

Os registros Application EUI, Application Key, Network Session Key, Application Session Key e Device Address devem ser enviados no formato HEX.

O Application Key só deve ser preenchido caso a forma de ativação no Network Server seja OTAA. Nesse caso, pode-se ignorar os registros Network Session Key, Application Session Key e Device Address. Se a forma de ativação no Network Server for ABP, o Application Key pode ser ignorado, mas os registros Network Session Key, Application Session Key e Device Address devem ser preenchidos.

**CONFIGURAÇÕES GERAIS LORA (HOLDING REGISTER 43.646)

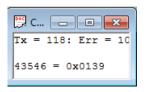
D15	D14	D13	D12	D11	D10	D9	D8
-----	-----	-----	-----	-----	-----	----	----

BIT	DESCRIÇÃO	VALORES
D15	Reservado	0
D14	Reservado	0
D13	Reservado	0
D12	Buffer LoRa	0: desabilitado 1: habilitado).
D11	Janelas de delay de join e receive*	0: RX1 = 1 segundo, RX2 = 2 segundos 1: RX1 = 5 segundos, RX2 = 6 segundos
D8 – D10	Número de tentativas retransmissões	000: 1 001: 2 010: 3 011: 4 100: 5 101: 6 110: 7 111: 8

D	7	D6	D5	D4	D3	D2	D1	D0
---	---	----	----	----	----	----	----	----

BIT	DESCRIÇÃO	VALORES
		000 - DR0 001 - DR1 010 -
D5 – D7	Data Rate	DR2 011 - DR3 100 - DR4
		101 - DR5
D4	Classe LoRa	0: Classe A
Classe Lora		1: Classe C
D3	Envio de	0: Sem confirmação
DS	Mensagem	1: Com Confirmação
D2	Ativação ABP	0: ABP
DZ	ou OTAA	1: OTAA
D1	ADR ON ou	0: Disabled
01	OFF	1: Enabled
D0	Tino do Podo	0: Privada
1 50	Tipo de Rede	1: Pública

(O padrão Everynet/ATC/Netmore no Brasil é 5/6 segundos.)


*** Link Check LoRa:

Se o registro 43.647 estiver zerado, significa que a função de link check do módulo lora está desabilitada.

No exemplo abaixo, o LoRa está configurado para fazer 2 retransmissões, DR1, Classe C, Mensagem com confirmação, Ativação ABP, ADR OFF, Rede Pública.

Revisão 1.1 Outubro/2025

Observação 1: O número de retransmissões deve ser configurado quando é utilizada a mensagem Com Confirmação. Caso o Network Server não receba a mensagem ou o instrumento não receba a resposta do Network Server, serão feitas novas tentativas de enviar o mesmo frame, de acordo com a configuração do número de tentativas de retransmissões.

Observação 2: Para que as alterações das configurações acima sejam realizadas, deverá ser enviado um Coil de Reset do Aparelho após enviar os comandos acima, pois essa alteração só é possível de ser feita na inicialização do equipamento.

3.17 Quantidade de Blocos a serem retransmitidos via MQTT

ENDEREÇO	QTDE MÁXIMA DE CARACTERES (BYTES)	DESCRIÇÃO	FORMATO	RANGE (MIN – MÁX)
43.791	2	Blocos a serem retransmitidos	Unsigned int 16-bit	0 – 65535

3.18 Quantidade de Blocos a serem retransmitidos via LoRa

ENDEREÇO	QTDE MÁXIMA DE CARACTERES (BYTES)	DESCRIÇÃO	FORMATO	RANGE (MIN – MÁX)
43.891	2	Blocos a serem retransmitidos	Unsigned int 16-bit	0 – 65535

3.19 Configuração de alarme (Curva de Carga)

D15	D14	D13	D12	D11	D10	D9	D8		D7	D6	D5	D4	D3	D2	D1	D0
-----	-----	-----	-----	-----	-----	----	----	--	----	----	----	----	----	----	----	----

BIT	DESCRIÇÃO	VALORES
D8-D15	Tempo Máximo de Alarme	0: Sem limite Máximo 1 a 255 minutos (decimal)

BIT	DESCRIÇÃO	VALORES
D7	Alarme	0: ETH habilitado 1: ETH desabilitado
D6	Alarme Power Fail	0: Alarme desabilitado 1: Alarme habilitado
D0-D5	Intervalo de Envio	1 a 60 segundos (decimal)

Observação: Se o intervalo configurado estiver fora do valor aceitável, será considerado o valor 0 no registro fazendo com que o alarme seja desativado.

Revisão 1.1 Outubro/2025

3.20 Quantidade de Blocos a serem retransmitidos via LoRa

ENDEREÇO	QTDE MÁXIMA DE CARACTERES (BYTES)	DESCRIÇÃO	FORMATO	RANGE (MIN – MÁX)
43.902	2	Grandeza 1	Unsigned int 16-bit	0 – 65535
43.903	2	Grandeza 2	Unsigned int 16-bit	0 – 65535
43.904	2	Grandeza 3	Unsigned int 16-bit	0 – 65535

3.21 Configuração dos limites de Alarme e Histerese

ENDEREÇO	QTDE MÁXIMA DE CARACTERES (BYTES)	DESCRIÇÃO	FORMATO	RANGE (MIN – MÁX)
43.905 a 43.906	4	Valor Máximo da	IEEE 32-bit fp (F2,F1),	0,01 – 9999,99
45.905 a 45.900	4	Grandeza 1	(FO,EXP)	0,01 – 9999,99
43.907 a 43.908	4	Valor Mínimo da	IEEE 32-bit fp (F2,F1),	0,01 – 9999,99
43.907 a 43.908		Grandeza 1	(FO,EXP)	
43.909 a 43.910	4	Valor Máximo da	IEEE 32-bit fp (F2,F1),	0,01 – 9999,99
45.909 a 45.910		Grandeza 2	(FO,EXP)	
43.911 a 43.912	4	Valor Mínimo da	IEEE 32-bit fp (F2,F1),	0,01 – 9999,99
43.911 a 43.912		Grandeza 2	(FO,EXP)	
43.913 a 43.914	4	Valor Máximo da	IEEE 32-bit fp (F2,F1),	0,01 – 9999,99
45.915 a 45.914		Grandeza 3	(FO,EXP)	
42.015 - 42.016	4	Valor Mínimo da	IEEE 32-bit fp (F2,F1),	0,01 – 9999,99
43.915 a 43.916		Grandeza 3	(FO,EXP)	
43.917 a 43.918	4	Histerese	IEEE 32-bit fp (F2,F1),	0,01 – 100
45.917 d 43.918		пізсегезе	(FO,EXP)	

3.22 Configuração das saídas via relês (Curva de Carga)

	D15	D14	D13	D12	D11	D10	D9	D8		D7	D6	D5	D4	D3	D2	D1	D0
--	-----	-----	-----	-----	-----	-----	----	----	--	----	----	----	----	----	----	----	----

BIT	DESCRIÇÃO	VALORES
D8-D15	Reservado	0

BIT	DESCRIÇÃO	VALORES			
D6-D7	Reservado	0			
D4-D5	O0: Não aciona relês O1: Aciona relê 1 O1: Aciona relê 2 O1: Aciona relê 1 e 2				
D2-D3	Saída para Alarme 2	00: Não aciona relês01: Aciona relê 110: Aciona relê 211: Aciona relê 1 e 2			
D0-D1	Saída para Alarme 1	00: Não aciona relês01: Aciona relê 110: Aciona relê 211: Aciona relê 1 e 2			

Revisão 1.1 Outubro/2025

Observação: As saídas devem ser habilitadas na calibração para que a configuração tenha efeito, caso só seja habilitada a saída 1 a configuração para a saída 2 é irrelevante e a opção que aciona as duas saídas ativará apenas a saída 1.

Para que tenha um funcionamento correto o relê possui dois modos de funcionamento.

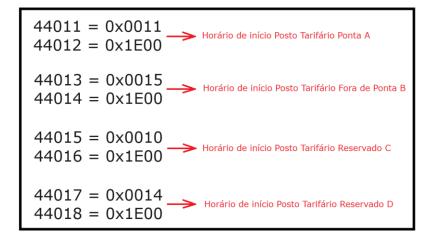
Modo Latch: Modo comum de funcionamento;

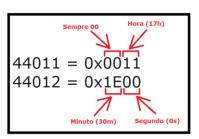
Modo Alarme: Ativado quando o relê for escolhido para ser saída de qualquer alarme.

Quando o relê estiver em modo alarme não será possível ativá-lo ou desativá-lo por outros meios se não o alarme. Essa configuração é independente para cada relê, podendo o relê 1 estar em modo alarme e o relê 2 em modo latch. As configurações só terão efeito após a reinicialização do dispositivo.

3.23 Configuração Multi-tarifação

ENDEREÇO	QTDE MÁXIMA DE CARACTERES (BYTES)	DESCRIÇÃO	FORMATO	RANGE (MIN – MÁX)
44.001	2	Configurações Multi- tarifação	Unsigned int 16-bit	0 – 65535

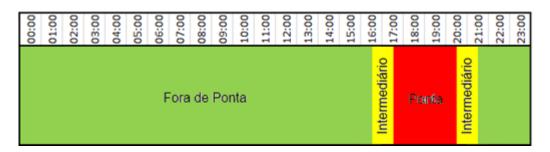

bit 0 – Habilita/Desabilita a função multi-tarifação (0 = Desabilitado; 1 = Habilitado)


bit 1 - Habilita/Desabilita Horário Reservado C (0 = Desabilitado; 1 = Habilitado)

bit 2 - Habilita/Desabilita Horário Reservado D (0 = Desabilitado; 1 = Habilitado)

3.24 Configuração Multi-tarifação

ENDEREÇO	QTDE MÁXIMA DE CARACTERES (BYTES)	DESCRIÇÃO	FORMATO
44.011 a 44.018	16	Início postos tarifários	Unsigned int 16-bit


No exemplo acima, os postos tarifários estão configurados da seguinte maneira:

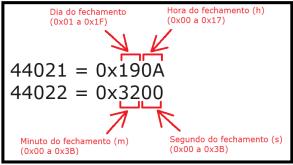
- Horário de início do Posto Tarifário Ponta A: 17:30:00
- Horário de início do Posto Tarifário Fora de Ponta B: 21:30:00
- Horário de início do Posto Tarifário Reservado C: 16:30:00
- Horário de início do Posto Tarifário Reservado D: 20:30:00

A imagem abaixo ilustra bem a o exemplo de configuração mostrado acima:

Revisão 1.1 Outubro/2025

3.25 Configurações dos horários de fechamento do período (Multi-Tarifação)

ENDEREÇO	QTDE MÁXIMA DE CARACTERES (BYTES)	DESCRIÇÃO	FORMATO
44.021 a 44.046	52	Fechamento do Período	Unsigned int 16-bit


Existem duas maneiras de realizar o fechamento mensal do período.

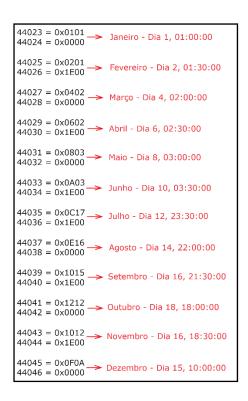
A primeira opção envolve a habilitação e configuração de uma data e hora de fechamento global, ou seja, definindo um dia e horário fixos para encerrar o período. Por exemplo, é possível estabelecer o fechamento do período para ocorrer todo dia 25, às 10:50 da manhã. Dessa forma, todos os meses o fechamento será executado no dia 25, pontualmente às 10:50.

A segunda alternativa consiste em desativar o fechamento global e configurar individualmente as datas de fechamento do período a cada mês. Nesse caso, é possível definir um dia e horário de fechamento distintos para cada mês.

É importante ressaltar que as configurações de fechamento mês a mês somente terão efeito se o fechamento global estiver desabilitado.

O fechamento global é definido através dos registros 44.021 e 44.022 e as configurações desses registros são esclarecidas na imagem abaixo:

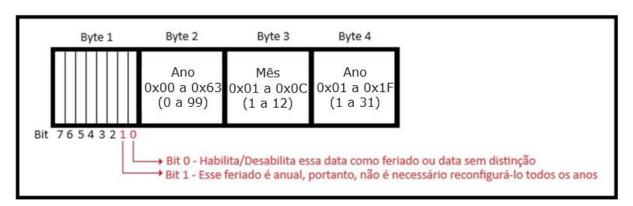
Ne exemplo da imagem acima, o fechamento global está configurado para o dia 25 (0x19), às 10 horas (0x0A) e 50 minutos (0x32).


Para desabilitar o fechamento global, basta configurar uma data inválida no Dia do fechamento, por exemplo, 0x00. Por exemplo:

44021 = 0x000A44022 = 0x3200

A configuração do fechamento mês a mês é feito através dos registros subsequentes, da mesma maneira que é feito o fechamento global, conforme mostrado na imagem abaixo:

Revisão 1.1 Outubro/2025



3.26 Configurações dos dos feriados e datas sem distinção (Multi-Tarifação)

ENDEREÇO	QTDE MÁXIMA DE CARACTERES (BYTES)	DESCRIÇÃO	FORMATO
44.051 a 44.120	140	Feriados	Unsigned int 16-bit

Os feriados e datas sem distinção são tratados pelo instrumento exatamente da mesma forma. Somente a nomenclatura é diferente. Podem ser configuradas 5 datas sem distinção (registros 44.051 a 44.060) e 30 feriados (registros 44.061 - 44.120).

A forma como cada registro pode ser configurado é mostrada na imagem abaixo:

Revisão 1.1 Outubro/2025

Quando a data é configurada como "feriado anual", o ano configurado não tem importância, porém deve ser configurado entre 0 e 99 (0x00 e 0x63).

Exemplo de configuração das datas sem distinção:

```
\begin{array}{c} 44051 = 0x0117 \\ 44052 = 0x0214 \end{array} \longrightarrow \text{Data sem distinção } 1 - \text{habilitado, não anual - } 20/02/2023 \\ 44053 = 0x0117 \\ 44054 = 0x0408 \end{array} \longrightarrow \text{Data sem distinção } 2 - \text{habilitado, não anual - } 08/04/2023 \\ \hline 44055 = 0x0117 \\ 44056 = 0x0416 \end{array} \longrightarrow \text{Data sem distinção } 3 - \text{habilitado, não anual - } 22/04/2023 \\ \hline 44057 = 0x0317 \\ 44058 = 0x080E \longrightarrow \text{Data sem distinção } 4 - \text{habilitado, anual - } 14/11/2023 \\ \hline 44059 = 0x0017 \\ 44060 = 0x0C1A \longrightarrow \text{Data sem distinção } 5 - \text{desabilitado, não anual - } 26/12/2023 \\ \hline \end{array}
```

Exemplo de configuração dos feriados:

Feriado 1{	44061 = 0x0317	44071 = 0x0317	44081 = 0x0000	44091 = 0x0000	44101 = 0x0000	44111 = 0x00000 Feriado 26
Terrado I ($44062 = 0 \times 0101$	44072 = 0x0B02	$44082 = 0 \times 0000$	$44092 = 0 \times 0000$	44102 - 0X0000	44112 - 0x0000 F
Feriado 2{	44063 = 0x0317	44073 = 0x0317	44083 = 0x0000	44093 = 0x0000	44103 = 0x0000	44113 = 0x00000 44114 = 0x00000 Feriado 27
Terrado 2	44064 = 0x0415	44074 = 0x0B0F	44084 = 0x0000	44094 = 0x0000	44104 = 0x0000	44114 = 0x00000 FEIIau0 27
	44065 = 0x0317	44075 = 0x0317	44085 = 0x0000	44095 = 0x0000	44105 = 0x0000	44115 = 0x0117
	44066 = 0x0501	44076 = 0x0C19	44086 = 0x0000	44096 = 0x0000	44106 = 0x0000	44116 = 0x0215
	44067 = 0x0317	44077 = 0x0000	44087 = 0x0000	44097 = 0x0000	44107 = 0x0000	44117 = 0x0117 •
	44068 = 0x0907	44078 = 0x0000	44088 = 0x0000	44098 = 0x0000	44108 = 0x0000	44118 = 0x0407
Feriado 5 {	44069 = 0x0317	44079 = 0x0000	44089 = 0x0000	44099 = 0x0000	44109 = 0x0000	44119 = 0x0117 44120 = 0x0608 Feriado 30
T CITICAGO 5 (44070 = 0x0A0C	44080 = 0x0000	$44090 = 0 \times 00000$	$44100 = 0 \times 0000$	$44110 = 0 \times 00000$	44120 = 0x0608

Na imagem acima, nota-se que temos os seguintes feriados configurados:

FERIADO	DATA	HABILITADO?	ANUAL?
Feriado 1	01/01/23 (Réveillon)	Sim	Sim
Feriado 2	21/04/23 (Tiradentes)	Sim	Sim
Feriado 3	01/05/23 (Dia do trabalhador)	Sim	Sim
Feriado 4	07/09/23 (Independência do Brasil)	Sim	Sim
Feriado 5	12/10/23 (Padroeira do Brasil)	Sim	Sim
Feriado 6	02/11/23 (Finados)	Sim	Sim
Feriado 7	15/11/23 (Proclamação da República)	Sim	Sim
Feriado 8	25/12/23 (Natal)	Sim	Sim

Os outros feriados estão desabilitados.

Além disto, estão habilitados também os feriados 28, 29 e 30. Note que o instrumento calcula automaticamente esses feriados de acordo com o ano atual. No exemplo acima, no ano de 2023, as datas desses feriados foram as seguintes:

FERIADO	DATA	HABILITADO?
Feriado 28	21/02/23 (Terça-feira de carnaval)	Sim
Feriado 29	07/04/23 (Sexta-feira da paixão)	Sim
Feriado 30	25/12/23 (Natal)	Sim

<u>ATENÇÃO:</u> Nos três últimos feriados (registros 44.115 a 44.120) não é possível configurar das datas de feriados. Somente é permitido habilitar ou desabilitar essa data. Esses registros referem-se à feriados em datas móveis. São eles:

- Carnaval (registros 44.115 e 44.116)
- Sexta-feira da paixão (registros 44.117 e 44.118)

D7

D6

D5

Revisão 1.1 Outubro/2025

Corpus Christi (registros 44.119 e 44.120)

Sempre que esses feriados forem habilitados, eles serão considerados como feriados anuais, ou seja, a configuração de "feriado anual" para esses registros é ignorada, pois eles sempre serão anuais. O instrumento irá calcular automaticamente as datas desses três feriados em cada ano.

3.27 Configuração de Controle de Consumo

Através do Holding Register 45.001 é possível realizar as seguintes configurações:

BIT	DESCRIÇÃO	VALORES
D8-D15	Reservado	0

BIT	DESCRIÇÃO	VALORES
D7	Reservado	0: Ativa na janela permitida
		1: Desativa na janela permitida

D3

D2

D1

D0

D4

00: Não aciona relês 01: Aciona relê 1 Saída para D5-D6 consumo 3 10: Aciona relê 2 11: Aciona relê 1 e 2 00: Não aciona relês 01: Aciona relê 1 Saída para D3-D4 consumo 2 10: Aciona relê 2 11: Aciona relê 1 e 2 00: Não aciona relês Saída para **01:** Aciona relê 1 D1-D2 consumo 1 10: Aciona relê 2 11: Aciona relê 1 e 2 Habilita 0: Controle desabilitado D0 controle de 1: Controle habilitado consumo

3.28 Configuração das Grandezas Monitoradas

ENDEREÇO	QTDE MÁXIMA DE CARACTERES (BYTES)	DESCRIÇÃO	FORMATO	RANGE (MIN – MÁX)
45.002	2	Grandeza 1	Unsigned int 16-bit	0 - 65535
45.003	2	Grandeza 2	Unsigned int 16-bit	0 – 65535
45.004	2	Grandeza 3	Unsigned int 16-bit	0 – 65535

Revisão 1.1 Outubro/2025

3.29 Configuração dos limites de Alarme e Histerese

ENDEREÇO	QTDE MÁXIMA DE CARACTERES (BYTES)	DESCRIÇÃO	FORMATO	RANGE (MIN – MÁX)
45.005 a 45.006	4	Valor máximo da grandeza 1	IEEE 32-bit fp (F2,F1), (F0,EXP)	0,01 – 9999,99
45.007 a 45.008	4	Valor máximo da grandeza 2	IEEE 32-bit fp (F2,F1), (F0,EXP)	0,01 – 9999,99
45.009 a 45.010	4	Valor máximo da grandeza 3	IEEE 32-bit fp (F2,F1), (F0,EXP)	0,01 – 9999,99
45.011	2	Tempo limite do controle (HH:MM)	Unsigned int 16-bit	0x0000 a 0x2359
45.012	2	Tempo de inicio do controle (HH:MM)	Unsigned int 16-bit	0x0000 a 0x2359

Revisão 1.1 Outubro/2025

4. INPUT REGISTERS (OXO4H)

Grandezas Elétricas: podem ser lidos até 66 registros de uma única vez (de 30001 a 30066).

4.1 Grandezas:

ENDEREÇO	END. MQTT e LoRa	REG.	DESCRIÇÃO	FORMATO
30.001, 30.002	-	NS	Número de Série	Unsigned int 32-bit (MSB,LSB)
30.003, 30.004	2	UO	Tensão Trifásica (V)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.005, 30.006	4	U12	Tensão Fase/Fase (A-B)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.007, 30.008	6	U23	Tensão Fase/Fase (B-C)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.009, 30.010	8	U31	Tensão Fase/Fase (C-A)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.011, 30.012	10	U1	Tensão Linha 1 (V)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.013, 30.014	12	U2	Tensão Linha 2 (V)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.015, 30.016	14	U3	Tensão Linha 3 (V)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.017, 30.018	16	10	Corrente Trifásica (A)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.019, 30.020	-	Reservado	-	-
30.021, 30.022	20	I1	Corrente Linha 1 (A)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.023, 30.024	22	12	Corrente Linha 2 (A)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.025, 30.026	24	13	Corrente Linha 3 (A)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.027, 30.028	26	Freq - FA	Freqüência Linha 1	IEEE 32-bit fp (F2,F1,F0,EXP)
30.029, 30.030	-	Reservado	-	-
30.031, 30.032	-	Reservado	-	-
30.033, 30.034	-	Reservado	-	-
30.035, 30.036	34	P0	Potência Ativa Trifásica (W)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.037, 30.038	36	P1	Potência Ativa Linha 1 (W)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.039, 30.040	38	P2	Potência Ativa Linha 2 (W)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.041, 30.042	40	P3	Potência Ativa Linha 3 (W)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.043, 30.044	42	Q0	Potência Reativa Trifásica (VAr)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.045, 30.046	44	Q1	Potência Reativa Linha 1 (VAr)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.047, 30.048	46	Q2	Potência Reativa Linha 2 (VAr)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.049, 30.050	48	Q3	Potência Reativa Linha 3 (VAr)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.051, 30.052	50	S0	Potência Aparente Trifásica (VA)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.053, 30.054	52	S1	Potência Aparente Linha 1 (VA)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.055, 30.056	54	S2	Potência Aparente Linha 2 (VA)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.057, 30.058	56	S3	Potência Aparente Linha 3 (VA)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.059, 30.060	58	FP0	Fator de Potência Trifásico	IEEE 32-bit fp (F2,F1,F0,EXP)
30.061, 30.062	60	FP1	Fator de Potência Linha 1	IEEE 32-bit fp (F2,F1,F0,EXP)
30.063, 30.064	62	FP2	Fator de Potência Linha 2	IEEE 32-bit fp (F2,F1,F0,EXP)
30.065, 30.066	64	FP3	Fator de Potência Linha 3	IEEE 32-bit fp (F2,F1,F0,EXP)
,				
30.095, 30.096	94	EDP-1	Contador da EDP-1	IEEE 32-bit float point
30.097, 30.098	96	EDP-2	Contador da EDP-2	IEEE 32-bit float point
30.099, 30.100	98	EDP-3*	Contador da EDP-3*	IEEE 32-bit float point
,				·
30.111	110	EDP1S	Status da EDP1	Uint 16-bit
30.112	111	EDP2S	Status da EDP2	Uint 16-bit
30.113	112	EDP3S*	Status da EDP3*	Uint 16-bit
30.114	113	OUT1S	Status da Saída 1	Uint 16-bit
30.115	114	OUT2S*	Status da Saída 2*	Uint 16-bit
30.131	130	EDP-1**	Largura do pulso EDP-1**	Unsigned int 16-bit (LSB, MSB)
30.132	131	EDP-2**	Largura do pulso EDP-2**	Unsigned int 16-bit (LSB, MSB)
30.133	132	EDP-3**	Largura do pulso EDP-3**	Unsigned int 16-bit (LSB, MSB)
	-	_		<u> </u>
30.151	150	LSTS***	Status da carga***	Uint 16-bit
1	l	1		

Revisão 1.1 Outubro/2025

ENDEREÇO	END. MQTT e LoRa	REG.	DESCRIÇÃO	FORMATO
30.161, 30.162	160	HORIM****	Horímetro****	IEEE 32-bit fp (F2,F1,F0,EXP)
30.101, 30.102	100	11011111	THE THIRD IS NOT THE THE THE THE THE THE THE THE THE TH	1222 32 810 19 (12)1 2)1 3)271 7
30.201, 30.202	200	EA+	Energia Ativa Positiva (KWh)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.203, 30.204	202	ER+	Energia Reativa Positiva(KVArh)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.205, 30.206	204	EA-	Energia Ativa Negativa (KWh)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.207, 30.208	206	ER-	Energia Reativa Negativa (KVArh)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.209, 30.210	208	MDA	Máx. Demanda Ativa (KW)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.211, 30.212	210	DA	Demanda Ativa (KW)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.213, 30.214	212	MDS	Máx. Demanda Aparente (KVA)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.215, 30.216	214	DS	Demanda Aparente (KVA)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.217, 30.218	216	MDR	Máx. Demanda Reativa (KVAr)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.219, 30.220	218	DR	Demanda Reativa (KVAr)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.221, 30.222	220	MDI	Máx. Demanda Corrente (A)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.223, 30.224	222	DI	Demanda Corrente (A)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.225, 30.226	224	ES	Energia Aparente	IEEE 32-bit fp (F2,F1,F0,EXP)
30.301, 30.302	300	EAD+****	Delta de Energia Ativa Positiva (KWh)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.303, 30.304	302	ERD+****	Delta de Energia Reativa Positiva (KVArh)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.305, 30.306	304	EAD-****	Delta de Energia Ativa Negativa (KWh)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.307, 30.308	306	ERD-****	Delta de Energia Reativa Negativa (KVArh)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.309, 30.310	308	ESD****	Delta de Energia Aparente (kVAh)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.311, 30.312	310	EA1D+****	Delta de Energia Ativa Positiva Fase 1 (KWh)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.313, 30.314	312	ER1D+****	Delta de Energia Reativa Positiva Fase 1 (KVArh)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.315, 30.316	314	EA1D-****	Delta de Energia Ativa Negativa Fase 1 (KWh)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.317, 30.318	316	ER1D-****	Delta de Energia Reativa Negativa Fase 1 (KVArh)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.319, 30.320	318	EA2D+****	Delta de Energia Ativa Positiva Fase 2 (KWh)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.321, 30.322	320	ER2D+****	Delta de Energia Reativa Positiva Fase 2 (KVArh)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.323, 30.324	322	EA2D-****	Delta de Energia Ativa Negativa Fase 2 (KWh)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.325, 30.326	324	ER2D-****	Delta de Energia Reativa Negativa Fase 2 (KVArh)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.327, 30.328	326	EA3D+****	Delta de Energia Ativa Positiva Fase 3 (KWh)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.329, 30.330	328	ER3D+****	Delta de Energia Reativa Positiva Fase 3 (KVArh)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.331, 30.332	330	EA3D-****	Delta de Energia Ativa Negativa Fase 3 (KWh)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.333, 30.334	332	ER3D-****	Delta de Energia Reativa Negativa Fase 3 (KVArh)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.335, 30.336	334	ES1D****	Delta de Energia Aparente Fase 1 (kVAh)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.337, 30.338	336	ES2D****	Delta de Energia Aparente Fase 2 (kVAh)	IEEE 32-bit fp (F2,F1,F0,EXP)
30.339, 30.340	338	ES3D****	Delta de Energia Aparente Fase 3 (kVAh)	IEEE 32-bit fp (F2,F1,F0,EXP)
31.201, 31.202	1200	EA1+	Energia Ativa Positiva Fase 1 (KWh)	IEEE 32-bit fp (F2,F1,F0,EXP)
31.203, 31.204	1202	ER1+	Energia Reativa Positiva Fase 1 (KVArh)	IEEE 32-bit fp (F2,F1,F0,EXP)
31.205, 31.206	1204	EA1-	Energia Ativa Negativa Fase 1 (KWh)	IEEE 32-bit fp (F2,F1,F0,EXP)
31.207, 31.208	1206	ER1-	Energia Reativa Negativa Fase 1 (KVArh)	IEEE 32-bit fp (F2,F1,F0,EXP)
31.209, 31.210	1208	EA2+	Energia Ativa Positiva Fase 2 (KWh)	IEEE 32-bit fp (F2,F1,F0,EXP)
31.211, 31.212	1210	ER2+	Energia Reativa Positiva Fase 2 (KVArh)	IEEE 32-bit fp (F2,F1,F0,EXP)
31.213, 31.214	1212	EA2-	Energia Ativa Negativa Fase 2 (KWh)	IEEE 32-bit fp (F2,F1,F0,EXP)
31.215, 31.216	1214	ER2-	Energia Reativa Negativa Fase 2 (KVArh)	IEEE 32-bit fp (F2,F1,F0,EXP)
31.217, 31.218	1216	EA3+	Energia Ativa Positiva Fase 3 (KWh) IEEE 32-bit fp (F2	
31.219, 31.220	1218	ER3+	Energia Reativa Positiva Fase 3 (KVArh) IEEE 32-bit fp (F2,F1,F0	
31.221, 31.222	1220	EA3-	Energia Ativa Negativa Fase 3 (KWh) IEEE 32-bit fp (F2,F1,F0,EX	
31.223, 31.224	1222	ER3-	Energia Reativa Negativa Fase 3 (KVArh) IEEE 32-bit fp (F2,F1,F0,EXP	
31.225, 31.226	1224	ES1	Energia Aparente Fase 1 IEEE 32-bit fp (F2,F1,F0,EXP)	
31.227, 31.228	1226	ES2	Energia Aparente Fase 2	IEEE 32-bit fp (F2,F1,F0,EXP)
31.229, 31.230	1228	ES3	Energia Aparente Fase 3	IEEE 32-bit fp (F2,F1,F0,EXP)

Revisão 1.1 Outubro/2025

*EDP3 não poderá ser utilizada juntamente com SD2, pois não é possível obter 3 entradas e duas saídas digitais.

- ** A largura do pulso é medida a partir da borda de subida até a próxima borda de subida. O range de medição é de 0 a 999, onde cada unidade representa 100 milissegundos. Por exemplo, o valor 123 representa um pulso de 12,3 segundos. O valor máximo medido é de 99,9 segundos. Se o tempo for maior que 99,9 segundos, o valor desse registro será 999. O valor armazenado se refere ao último pulso recebido na entrada.
- *** Status da carga: 0 = OFF; 1 = ON
- **** Exemplo de valor do Horímetro:

Valor: 45.50

O valor acima representa que o horímetro está marcando o valor de 45 horas e 30 minutos. O horímetro atende o padrão comercial 1/100 e tem resolução de 36 segundos.

- ***** Os cálculos dos Deltas de Energias serão realizados quando pelo menos uma das condições abaixo for verdadeira:
- LoRa Habilitado.
- MQTT habilitado.

Caso nenhuma das opções acima esteja habilitada, os valores dos Deltas de Energias serão sempre 0. A base de tempo para o cálculo dos Deltas vai depender do intervalo de publicação de LoRa ou MQTT. Caso ambos estejam desabilitados, será considerado o intervalo de armazenamento da memória de massa

Por exemplo, se o intervalo de publicação do MQTT está configurado para 15 minutos, teremos os cálculos dos Deltas de Energia sendo realizados a cada 15 minutos.

Revisão 1.1 Outubro/2025

4.2 Grupo de mínimos e máximos:

NORMAL	VALOR MÍNIMO	VALOR MÁXIMO	REG.	DESCRIÇÃO
30.003, 30.004	31.003, 31.004	32.003, 32.004	U0	Tensão Trifásica (V)
30.005, 30.006	31.005, 31.006	32.005, 32.006	U12	Tensão Fase/Fase (A-B)
30.007, 30.008	31.007, 31.008	32.007, 32.008	U23	Tensão Fase/Fase (B-C)
30.009, 30.010	31.009, 31.010	32.009, 32.010	U31	Tensão Fase/Fase (C-A)
30.011, 30.012	31.011, 31.012	32.011, 32.012	U1	Tensão Linha 1 (V)
30.013, 30.014	31.013, 31.014	32.013, 32.014	U2	Tensão Linha 2 (V)
30.015, 30.016	31.015, 31.016	32.015, 32.016	U3	Tensão Linha 3 (V)
30.017, 30.018	31.017, 31.018	32.017, 32.018	10	Corrente Trifásica (A)
30.019, 30.020	31.019, 31.020	32.019, 32.020	-	Reservado.
30.021, 30.022	31.021, 31.022	32.021, 32.022	I1	Corrente Linha 1 (A)
30.023, 30.024	31.023, 31.024	32.023, 32.024	12	Corrente Linha 2 (A)
30.025, 30.026	31.025, 31.026	32.025, 32.026	13	Corrente Linha 3 (A)
30.027, 30.028	31.027, 31.028	32.027, 32.028	Freq - FA	Freqüência Linha 1
30.029, 30.030	31.029, 31.030	32.029, 32.030	-	Reservado.
30.031, 30.032	31.031, 31.032	32.031, 32.032	-	Reservado.
30.033, 30.034	31.033, 31.034	32.033, 32.034	-	Reservado.
30.035, 30.036	31.035, 31.036	32.035, 32.036	P0	Potência Ativa Trifásica (W)
30.037, 30.038	31.037, 31.038	32.037, 32.038	P1	Potência Ativa Linha 1 (W)
30.039, 30.040	31.039, 31.040	32.039, 32.040	P2	Potência Ativa Linha 2 (W)
30.041, 30.042	31.041, 31.042	32.041, 32.042	P3	Potência Ativa Linha 3 (W)
30.043, 30.044	31.043, 31.044	32.043, 32.044	Q0	Potência Reativa Trifásica (VAr)
30.045, 30.046	31.045, 31.046	32.045, 32.046	Q1	Potência Reativa Linha 1 (VAr)
30.047, 30.048	31.047, 31.048	32.047, 32.048	Q2	Potência Reativa Linha 2 (VAr)
30.049, 30.050	31.049, 31.050	32.049, 32.050	Q3	Potência Reativa Linha 3 (VAr)
30.051, 30.052	31.051, 31.052	32.051, 32.052	S0	Potência Aparente Trifásica (VA)
30.053, 30.054	31.053, 31.054	32.053, 32.054	S1	Potência Aparente Linha 1 (VA)
30.055, 30.056	31.055, 31.056	32.055, 32.056	S2	Potência Aparente Linha 2 (VA)
30.057, 30.058	31.057, 31.058	32.057, 32.058	S3	Potência Aparente Linha 3 (VA)
30.059, 30.060	31.059, 31.060	32.059, 32.060	FP0	Fator de Potência Trifásico
30.061, 30.062	31.061, 31.062	32.061, 32.062	FP1	Fator de Potência Linha 1
30.063, 30.064	31.063, 31.064	32.063, 32.064	FP2	Fator de Potência Linha 2
30.065, 30.066	31.065, 31.066	32.065, 32.066	FP3	Fator de Potência Linha 3

4.3 Códigos de erro:

ENDEREÇO	REG.	DESCRIÇÃO	FORMATO
33.901	Erro	Código de Erro*	Int 16-bit (MSB,LSB)
33.902	ErroInt	Reservado.	-
33.903	ErroWF	Código de Erro do módulo wifi**	Int 16-bit (MSB,LSB)
33.904	ErroLoRa	Código de Erro do módulo LoRa***	Int 16-bit (MSB,LSB)

Revisão 1.1 Outubro/2025

4.4 Identificação dos códigos de erro:

O código de erro (registro 33.901) permite verificar a integridade do aparelho.

LSB:

CÓDIGO (decimal)	DESCRIÇÃO
00	Funcionamento Correto.
01	Inversão de Fase ou Falta de Fase.
02	Erro Matemático.
04	Overflow na geração do Pulso de Energia.
16	Sistema reinicializado incorretamente.
64	RTC – Bateria fraca.
128	Erro na Memória de Massa.

MSB:

CÓDIGO (decimal)	DESCRIÇÃO
00	Funcionamento Correto.
02	Configuração incorreta do módulo de comunicação
04	Configuração incorreta do Hardware utilizado
08	Proteção de Firmware ativa.
64	Erro no módulo Wi-Fi.

Observe que o código é binário, ou seja, pode haver uma combinação de códigos. Assim, um código de erro 09 identifica um código de erro 01 mais código 08.

4.5 Identificação dos códigos de erro do Módulo Wi-Fi:

O código de erro do módulo Wi-Fi (registro 33.903) permite verificar a causa de uma falha de conexão.

LSB:

CÓDIGO (decimal)	DESCRIÇÃO
00	Funcionamento Correto.
01	Tempo máximo de conexão com o AP atingido.
02	Senha de conexão com AP incorreta.
04	Não conseguiu encontrar o AP.
08	Conexão com AP falhou.
16	O broker recusou o login do instrumento.
32	Erro na publicação das grandezas.
64	Sem internet.
128	Erro desconhecido.

MSB:

CÓDIGO (decimal)	DESCRIÇÃO
00	Funcionamento Correto.
01	Reservado para uso futuro.
02	Reservado para uso futuro.
04	Reservado para uso futuro.
08	Reservado para uso futuro.
16	Reservado para uso futuro.
32	Reservado para uso futuro.
64	Reservado para uso futuro.
128	Reservado para uso futuro.

Revisão 1.1 Outubro/2025

Observe que o código é binário, ou seja, pode haver uma combinação de códigos. Assim, um código de erro 09 identifica um código de erro 01 mais código 08.

4.6 Identificação dos códigos de erro do Módulo LoRa:

O código de erro do módulo LoRa (registro 33.904) permite verificar a causa de uma falha de conexão.

LSB:

CÓDIGO (decimal)	DESCRIÇÃO	
00	Funcionamento Correto.	
01	Erro ao tentar fazer o Join na Rede LoRa (somente em OTAA)	
	Erro ao receber o downlink da mensagem de confirmação	
02	(somente se estiver configurada a mensagem com	
	confirmação).	
04	Reservado para uso futuro.	
08	Reservado para uso futuro.	
16	Reservado para uso futuro.	
32	Reservado para uso futuro.	
64	Reservado para uso futuro.	
128	Reservado para uso futuro.	

MSB:

CÓDIGO (decimal)	DESCRIÇÃO
00	Funcionamento Correto.
01	Reservado para uso futuro.
02	Reservado para uso futuro.
04	Reservado para uso futuro.
08	Reservado para uso futuro.
16	Reservado para uso futuro.
32	Reservado para uso futuro.
64	Reservado para uso futuro.
128	Reservado para uso futuro.

Observe que o código é binário, ou seja, pode haver uma combinação de códigos. Assim, um código de erro 09 identifica um código de erro 01 mais código 08.

4.7 Intensidade do sinal (RSSI) do último downlink LoRa.:

ENDEREÇO	REG.	DESCRIÇÃO	FORMATO
33.911	RSSI LoRa	Intensidade do sinal RSSI LoRa	uint 16-bit

^{*}Atenção: O valor do Registro RSSI é mostrado sem sinal (unsigned), porém, o valor é sempre negativo. Por exemplo, se o registro está mostrando o valor 102, significa que o valor do RSSI é de -102 dBm.

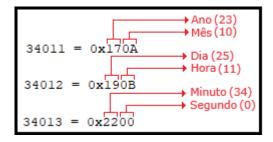
4.8 Status Multi-tarifação.:

ENDEREÇO	END. MQTT e LoRa	REG.	FORMATO
34.001	4000	Status da função Multi-tarifação	uint 16-bit

Revisão 1.1 Outubro/2025

Através do Holding Register 34.001 é possível realizar as seguintes configurações:

|--|


D7 D6 D5	D4 D3	3 D2	D1	D0
----------	-------	------	----	----

BIT	DESCRIÇÃO	VALORES
D11-D15	Reservado	0
D8-D10	Posto tarifário que está sendo armazenado	 000: Armazenamento padrão (somente totalizador). 001: Armazenando no Horário de Ponta A. 010: Armazenando no Horário Fora de Ponta B. 011: Armazenando no Horário Reservado C. 100: Armazenando no Horário Reservado D. 101: Reservado para uso futuro. 110: Reservado para uso futuro. 111: Reservado para uso futuro. 111: Reservado para uso futuro.

BIT	DESCRIÇÃO	VALORES
D7	Horário Reservado D	0: Desabilitado 1: Habilitado
D6	Horário Reservado C	0: Desabilitado 1 : Habilitado
D5	Final de semana, feriado e/ou Data sem distinção?	0: Não 1: Sim (armazenamento somente no horário fora de ponta
D4	Horário de início dos postos tarifários	0: Configuração OK 1: Erro na configuração
D3	Fechamento do Período	0: Configuração OK 1: Erro na configuração
D2	Configuração de feriados/datas sem distinção	0: Configuração OK1: Erro na configuração
D1	Erro RTC	0: RTC OK 1: Erro no RTC
D0	Habilita / Desabilita a função Multi-tarifação	0: Desabilitado 1: Habilitado

4.9 Data/hora do último fechamento de período (multi-tarifação):

ENDEREÇO	REG.	FORMATO
34.011, 34.012, 34.013	Data/hora do último fechamento de período	Ano/mês/dia hora:minuto:segundo

No exemplo acima, o último fechamento de período ocorreu em 25/10/23 as 11:34:00.

Revisão 1.1 Outubro/2025

4.10 Energias e Demandas - Período 1 - Fechado (Multi-tarifação):

ENDEREÇO	END. MQTT	REG.	DESCRIÇÃO	FORMATO
	e LoRa			
34.101, 34.102	4100	P1AEA	Energia Ativa Positiva Ponta A, Período 1. (kWh)	fp (F2,F1,F0,EXP)
34.103, 34.104	4102	P1AER	Energia Reativa Positiva Ponta A, Período 1. (kVArh)	fp (F2,F1,F0,EXP)
34.105, 34.106	4104	P1AEAN	Energia Ativa Negativa Ponta A, Período 1. (kWh)	fp (F2,F1,F0,EXP)
34.107, 34.108	4106	P1AERN	Energia Reativa Negativa Ponta A, Período 1. (kVArh)	fp (F2,F1,F0,EXP)
34.109, 34.110	4108	P1AMDA	Máxima Demanda Ativa Ponta A, Período 1. (kW)	fp (F2,F1,F0,EXP)
34.111, 34.112	4110	P1ADA	Demanda Ativa Ponta A, Período 1. (kW)	fp (F2,F1,F0,EXP)
34.113, 34.114	4112	P1BEA	Energia Ativa Positiva Fora de Ponta B, Período 1. (kWh)	fp (F2,F1,F0,EXP)
34.115, 34.116	4114	P1BER	Energia Reativa Positiva Fora de Ponta B, Período 1.	fp (F2,F1,F0,EXP)
			(kVArh)	
34.117, 34.118	4116	P1BEAN	Energia Ativa Negativa Fora de Ponta B, Período 1. (kWh)	fp (F2,F1,F0,EXP)
34.119, 34.120	4118	P1BERN	Energia Reativa Negativa Fora de Ponta B, Período 1.	fp (F2,F1,F0,EXP)
			(kVArh)	
34.121, 34.122	4120	P1BMDA	Máxima Demanda Ativa Fora de Ponta B, Período 1. (kW)	fp (F2,F1,F0,EXP)
34.123, 34.124	4122	P1BDA	Demanda Ativa Fora de Ponta B, Período 1. (kW)	fp (F2,F1,F0,EXP)
34.125, 34.126	4124	P1CEA	Energia Ativa Positiva Reservado C, Período 1. (kWh)	fp (F2,F1,F0,EXP)
34.127, 34.128	4126	P1CER	Energia Reativa Positiva Reservado C, Período 1. (kVArh)	fp (F2,F1,F0,EXP)
34.129, 34.130	4128	P1CEAN	Energia Ativa Negativa Reservado C, Período 1. (kWh)	fp (F2,F1,F0,EXP)
34.131, 34.132	4130	P1CERN	Energia Reativa Negativa Reservado C, Período 1. (kVArh)	fp (F2,F1,F0,EXP)
34.133, 34.134	4132	P1CMDA	Máxima Demanda Ativa Reservado C, Período 1. (kW)	fp (F2,F1,F0,EXP)
34.135, 34.136	4134	P1CDA	Demanda Ativa Reservado C, Período 1. (kW)	fp (F2,F1,F0,EXP)
34.137, 34.138	4136	P1DEA	Energia Ativa Positiva Reservado D, Período 1. (kWh)	fp (F2,F1,F0,EXP)
34.139, 34.140	4138	P1DER	Energia Reativa Positiva Reservado D, Período 1. (kVArh)	fp (F2,F1,F0,EXP)
34.141, 34.142	4140	P1DEAN	Energia Ativa Negativa Reservado D, Período 1. (kWh)	fp (F2,F1,F0,EXP)
34.143, 34.144	4142	P1DERN	Energia Reativa Negativa Reservado D, Período 1. (kVArh)	fp (F2,F1,F0,EXP)
34.145, 34.146	4144	P1DMDA	Máxima Demanda Ativa Reservado D, Período 1. (kW)	fp (F2,F1,F0,EXP)
34.147, 34.148	4146	P1DDA	Demanda Ativa Reservado D, Período 1. (kW)	fp (F2,F1,F0,EXP)

Revisão 1.1 Outubro/2025

4.11 Energias e Demandas - Período 2 - Andamento (Multi-tarifação):

	END.		_	
ENDEREÇO	MQTT	REG.	DESCRIÇÃO	FORMATO
	e LoRa			
34.201, 34.202	4200	P2AEA	Energia Ativa Positiva Ponta A, Período 1. (kWh)	fp (F2,F1,F0,EXP)
34.203, 34.204	4202	P2AER	Energia Reativa Positiva Ponta A, Período 2. (kVArh)	fp (F2,F1,F0,EXP)
34.205, 34.206	4204	P2AEAN	Energia Ativa Negativa Ponta A, Período 2. (kWh)	fp (F2,F1,F0,EXP)
34.207, 34.208	4206	P2AERN	Energia Reativa Negativa Ponta A, Período 2. (kVArh)	fp (F2,F1,F0,EXP)
34.209, 34.210	4208	P2AMDA	Máxima Demanda Ativa Ponta A, Período 2. (kW)	fp (F2,F1,F0,EXP)
34.211, 34.212	4210	P2ADA	Demanda Ativa Ponta A, Período 2. (kW)	fp (F2,F1,F0,EXP)
34.213, 34.214	4212	P2BEA	Energia Ativa Positiva Fora de Ponta B, Período 2. (kWh)	fp (F2,F1,F0,EXP)
34.215, 34.216	4214	P2BER	Energia Reativa Positiva Fora de Ponta B, Período 2. (kVArh)	fp (F2,F1,F0,EXP)
34.217, 34.218	4216	P2BEAN	Energia Ativa Negativa Fora de Ponta B, Período 2. (kWh)	fp (F2,F1,F0,EXP)
34.219, 34.220	4218	P2BERN	Energia Reativa Negativa Fora de Ponta B, Período 2.	fp (F2,F1,F0,EXP)
			(kVArh)	
34.221, 34.222	4220	P2BMDA	Máxima Demanda Ativa Fora de Ponta B, Período 2. (kW)	fp (F2,F1,F0,EXP)
34.223, 34.224	4222	P2BDA	Demanda Ativa Fora de Ponta B, Período 2. (kW)	fp (F2,F1,F0,EXP)
34.225, 34.226	4224	P2CEA	Energia Ativa Positiva Reservado C, Período 2. (kWh)	fp (F2,F1,F0,EXP)
34.227, 34.228	4226	P2CER	Energia Reativa Positiva Reservado C, Período 2. (kVArh)	fp (F2,F1,F0,EXP)
34.229, 34.230	4228	P2CEAN	Energia Ativa Negativa Reservado C, Período 2. (kWh)	fp (F2,F1,F0,EXP)
34.231, 34.232	4230	P2CERN	Energia Reativa Negativa Reservado C, Período 2. (kVArh)	fp (F2,F1,F0,EXP)
34.233, 34.234	4232	P2CMDA	Máxima Demanda Ativa Reservado C, Período 2. (kW)	fp (F2,F1,F0,EXP)
34.235, 34.236	4234	P2CDA	Demanda Ativa Reservado C, Período 2. (kW)	fp (F2,F1,F0,EXP)
34.237, 34.238	4236	P2DEA	Energia Ativa Positiva Reservado D, Período 2. (kWh)	fp (F2,F1,F0,EXP)
34.239, 34.240	4238	P2DER	Energia Reativa Positiva Reservado D, Período 2. (kVArh)	fp (F2,F1,F0,EXP)
34.241, 34.242	4240	P2DEAN	Energia Ativa Negativa Reservado D, Período 2. (kWh)	fp (F2,F1,F0,EXP)
34.243, 34.244	4242	P2DERN	Energia Reativa Negativa Reservado D, Período 2. (kVArh)	fp (F2,F1,F0,EXP)
34.245, 34.246	4244	P2DMDA	Máxima Demanda Ativa Reservado D, Período 2. (kW)	fp (F2,F1,F0,EXP)
34.247, 34.248	4246	P2DDA	Demanda Ativa Reservado D, Período 2. (kW)	fp (F2,F1,F0,EXP)

4.12 Contadores parciais de controle de consumo:

ENDEREÇO	END. MQTT e LoRa	REG.	DESCRIÇÃO	FORMATO
36.001, 36.002	6000	Valor parc. Grandeza 1	Valor atual consumida pela grandeza 1	fp (F2,F1,F0,EXP)
36.003, 36.004	6002	Valor parc. Grandeza 2	Valor atual consumida pela grandeza 2	fp (F2,F1,F0,EXP)
36.005, 36.006	6004	Valor parc. Grandeza 3	Valor atual consumida pela grandeza 3	fp (F2,F1,F0,EXP)

4.13 Contadores parciais de controle de consumo:

ENDEREÇO	REG.	DESCRIÇÃO	FORMATO
38.101	Status dos Periféricos*	Periféricos habilitados no equipamento	unit 16-bit
38.102	Reservado		

^{*} Ver descrição do registro CONFIG no item 5

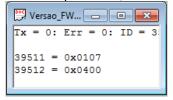
Revisão 1.1 Outubro/2025

4.14 MAC Address da rede Ethernet:

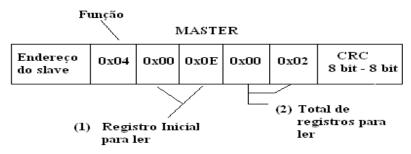
ENDEREÇO	REG.	DESCRIÇÃO	FORMATO
39.501, 39.502, 39.503	MAC	MAC Address do equipamento	(MSB,, LSB)

4.15 MAC Address WiFi:

ENDEREÇO	REG.	DESCRIÇÃO	FORMATO
39.504, 39.505, 39.506	MAC WF	MAC Address do equipamento	(MSB,, LSB)


4.16 Bluetooth:

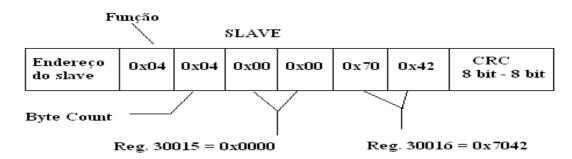
ENDEREÇO	REG.	DESCRIÇÃO	FORMATO
39.507, 39.508, 39.509	MAC_BT	MAC Address Bluetooth	(MSB,, LSB)


4.17 Versão de Firmware do Módulo WiFi ou LoRa

ENDEREÇO	REG.	DESCRIÇÃO	FORMATO
39.511, 39.512	Mod_FW *	Versão de Firmware do Módulo WiFi ou LoRa	(MSB,, LSB)

* No exemplo abaixo, está sendo lida a versão 1.7.4.0.

Os frames desta função (Input Register) para master e slave são:



- (1) O registro inicial para leitura é obtido removendo o indicativo (número 3) e subtraindo o resultado por 1. No exemplo, o registro 30015 (decimal) é transmitido como 0x000E (hexadecimal): 30015 = 00015 = 00014 = 0x000E hexadecimal.
- (2) Total de registros que podem ser lidos.

Revisão 1.1 Outubro/2025

A resposta do Slave:

O registro byte count é igual ao total de registros a serem lidos vezes 2, pois cada registro possui 2 bytes.

No exemplo acima o master pediu uma leitura dos registros que contém a FREQUÊNCIA (30015 e 30016) e obteve como resposta o valor 0x00007042 (IEEE 32-bit floating point). Convertendo esse valor para decimal temos que FREQUÊNCIA = 60 Hz.

5. <u>FORCE SINGLE COIL (05)</u>

Esta função permite executar os seguintes comandos:

COMANDO	DESCRIÇÃO
001	Reseta DEMANDA ATIVA
002	Reseta DEMANDA APARENTE
003	Reseta MÁXIMA DEMANDA ATIVA
004	Reseta MÁXIMA DEMANDA APARENTE
005	Reseta ENERGIA ATIVA POSITIVA
006	Reinicializa Dispositivo
007	Sincroniza Cálculo da DEMANDA
008	Reset DEMANDA REATIVA
009	Reset DEMANDA CORRENTE
010	Reset Máx. DEMANDA REATIVA
011	Reset Máx. DEMANDA CORRENTE
021	Reseta contador da entrada digital EDP1
022	Reseta contador da entrada digital EDP2
023	Reseta contador da entrada digital EDP3
031	Liga/Desliga SD1 (0-desliga/1-liga)
032	Liga/Desliga SD2 (0-desliga/1-liga)
040	Reseta todas as ENERGIAS, DEMANDAS e contadores das entradas digitais
050	Reset ENERGIA REATIVA POSITIVA
051	Reset ENERGIA ATIVA NEGATIVA
052	Reset ENERGIA REATIVA NEGATIVA
053	Reseta Mínimos e Máximos
054	Reset ENERGIA APARENTE
055	Reseta Energias e Demandas do Período 1 (multi-tarifação)
056	Reseta Energias e Demandas do Período 2 (multi-tarifação)
060	Habilita gravação do firmware do módulo Wifi ou LoRa (somente com Jumper de calibração)
062	Reseta o horímetro
070	Reseta configurações do módulo Wifi ou LoRa para padrões de fábrica (somente com Jumper de calibração)
074	Reseta Energias e Demandas dos Períodos 1 e 2 (multi-tarifação)
075	Executa o fechamento do período (multi-tarifação)
080	Zera conteúdo da Memória de Massa
090	Restaura parâmetros do medidor para o padrão de fábrica*
092	Força o envio do comando Link Check (LoRa).
110	Reseta contadores parciais do controle de consumo.

^{*} A restauração de fábrica irá alterar os seguintes parâmetros:

Revisão 1.1 Outubro/2025

Parâmetros	Valor Restaurado
Baudrate	9600
Formato do caractere	8N2
Endereço Modbus RTU	254
Endereço Modbus TCP Ethernet	255
Endereço IP Ethernet	10.0.0.1
Endereço Máscara Ethernet	255.0.0.0
Endereço Gateway Ethernet	0.0.0.0
Configuração de IP Ethernet	Estático
Endereço Modbus TCP WiFi	255
Endereço IP WiFi	10.0.0.1
Endereço Máscara WiFI	255.0.0.0
Endereço Gateway WiFi	0.0.0.0
Configuração de IP WiFi	DHCP
SNTP	Fuso GMT -3 / Intervalo de Sincronismo = 12 horas / Servidor NTP = a.st1.ntp.br
Descrição Bluetooth	K120_xxxxxxx (onde "xxxxxxx" é o nº de série)
Senha Bluetooth	1234

Revisão 1.1 Outubro/2025

6. READ INPUT STATUS

A leitura do status das entradas e saídas digitais é feito através da função "Read Input Status" solicitando os registros conforme mostra a tabela abaixo:

INPUT STATUS	DESCRIÇÃO
10.001	Status da entrada digital EDP1
10.002	Status da entrada digital EDP2
10.003	Status da saída digital SD1
10.004	Status da saída digital SD2
10.005	Status da entrada digital EDP3

O frame de resposta tem o seguinte formato:

MST:

Endereço	Função	Regi	stro	Qtd. re	gistros	Checksum			
01	02	00	00	00	01	В9	CA		

SLV:

Eı	ndereço	Função	Qtd. registros	Dado	Chec	ksum
	01	02	01	13	EO	45

Independentemente da quantidade de registros solicitados, a função retornará um único byte contendo o status de todos os registros, conforme ilustrado abaixo:

	Dado														
D7	D6	D5	D4	D3	D2	D1	D0								

BIT	DESCRIÇÃO	VALORES
D0	Estado da entrada EDP-1	0 – Inativa 1 - Ativa
D1	Estado da entrada EDP-2	0 – Inativa 1 - Ativa
D2	Estado da saída SD1	0 – Inativa 1 - Ativa
D3	Estado da saída SD2	0 – Inativa 1 - Ativa
D4	Estado da entrada EDP-3	0 – Inativa 1 - Ativa

7. <u>CONFIGURAÇÃO E LEITURA DA MEMÓRIA DE MASSA</u>

Abaixo, será feito um resumo de todas as configurações necessárias para fazer o armazenamento das grandezas elétricas na memória de massa conforme desejado pelo o usuário e também para realizar a leitura.

7.1 Programação do Relógio

O bloco de registros do relógio possui o seguinte formato:

- C Centésimos de Segundos
- S Segundos
- N Minutos
- H Hora
- DS Dia da semana (1 = domingo, 7 = sábado)
- D Dia
- M Mês
- A Ano

Para a programação do relógio com a data de 20/09/06 às 09:49:32:

REG = 42.001 – 40.001 = 2000d = 7D0h QTD = 4 registros (42.001 a 42.004)

REQUISIÇÃO:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
END	FUN	REG		QTD		ВС	RELÓ	RELÓGIO								
	FUN	MSB	LSB	MSB	LSB	ВС	С	S	N	Н	DS	D	М	Α	LSB	MSB
32	10	07	D0	00	04	08	00	32	49	09	04	20	09	06	88	42

RESPOSTA:

0	1	2 3		2 3 4 5 6			
END	ELINI	REG		QTD		CRC	
END	FUN	MSB	LSB	MSB	LSB	LSB	MSB
32	10	07 D0		00	04	C5	E1

Revisão 1.1 Outubro/2025

7.2 Programação do Intervalo de Armazenamento

Intervalo de armazenamento (IA) é o tempo entre as gravações na memória de massa das leituras realizadas pelo medidor. Pode variar entre 1 e 60 minutos. Qualquer valor diferente desse intervalo fará com que o comando seja ignorado pelo aparelho, ou seja, o Intervalo de Armazenamento não é alterado.

O Intervalo de Armazenamento pode ser alterado através do Holding Register 42.101.

<u>ATENÇÃO</u>: Ao alterar o intervalo de armazenamento, automaticamente a memória de massa é apagada, portanto os dados armazenados serão perdidos.

A programação do IA pode ser feita através da função MODBUS 10h (WriteMultipleRegisters) ou pela função MODBUS 06h (WriteSingleRegister).

No exemplo a seguir o IA será programado para 1 minuto através da função MODBUS 06h.

REQUISIÇÃO

0	1 2		3	4	5	6 7				
END	FUN	REG		IA		CRC	- 1			
END	FUN	MSB	LSB	MSB	LSB	LSB	MSB			
32	06	08	34	00	01	4C	35			

RESPOSTA

0	1	2	3	4	5	6	7		
END	FLIN	REG		IA		CRC			
END	FUN	MSB	LSB	MSB	LSB	LSB	MSB		
32	06	08	34	00	01	4C	35		

Quanto maior o intervalo de armazenamento, mais autonomia terá a memória, como pode ser visto na tabela abaixo:

Revisão 1.1 Outubro/2025

Quantidad e de Grandezas Elétricas			Dias de <i>i</i>	Armazer	namento)	
Programa		li	ntervalo de	Armazen	amento (IA	()	
das	1	2	5	10	15	20	60
1	1163	2326	5816	11633	17450	23267	69802
2	830	1661	4152	8305	12458	16611	49834
3	645	1291	3228	6456	9685	12913	38741
4	529	1058	2645	5290	7936	10581	31744
5	446	893	2232	4465	6698	8931	26794
6	386	773	1934	3868	5802	7736	23210
7	341	682	1706	3413	5120	6826	20480
8	304	608	1521	3043	4565	6087	18261
9	275	551	1379	2759	4138	5518	16554
10	253	506	1265	2531	3797	5063	15189
11	230	460	1152	2304	3456	4608	13824
12	213	426	1066	2133	3200	4266	12800
13	199	398	995	1991	2986	3982	11946
14	187	375	938	1877	2816	3754	11264
15	176	352	881	1763	2645	3527	10581
16	164	329	824	1649	2474	3299	9898
17	156	312	782	1564	2346	3128	9386
18	147	295	739	1479	2218	2958	8874
19	139	278	696	1393	2090	2787	8362
20	133	267	668	1336	2005	2673	8021

7.3 Programação das Grandezas Armazenadas

Os Holding Registers 42.102 a 42.121 são os registros responsáveis pela escolha de quais grandezas o usuário irá armazenar na memória de massa, onde o registro 42.102 é equivalente à Grandeza 1, o registro 42.103 é equivalente à Grandeza 2, e assim sucessivamente, até a Grandeza 20, como mostrado na tabela abaixo:

ENDEREÇO	DESCRIÇÃO	FORMATO
42.101	Intervalo de Armazenamento/envio	Unsigned int 16-bit
42.102	Grandeza 1	Unsigned int 16-bit
42.103	Grandeza 2	Unsigned int 16-bit
42.104	Grandeza 3	Unsigned int 16-bit
42.105	Grandeza 4	Unsigned int 16-bit
42.106	Grandeza 5	Unsigned int 16-bit
42.107	Grandeza 6	Unsigned int 16-bit
42.108	Grandeza 7	Unsigned int 16-bit
42.109	Grandeza 8	Unsigned int 16-bit
42.110	Grandeza 9	Unsigned int 16-bit
42.111	Grandeza 10	Unsigned int 16-bit
42.112	Grandeza 11	Unsigned int 16-bit
42.113	Grandeza 12	Unsigned int 16-bit
42.114	Grandeza 13	Unsigned int 16-bit
42.115	Grandeza 14	Unsigned int 16-bit
42.116	Grandeza 15	Unsigned int 16-bit
42.117	Grandeza 16	Unsigned int 16-bit
42.118	Grandeza 17	Unsigned int 16-bit
42.119	Grandeza 18	Unsigned int 16-bit
42.120	Grandeza 19	Unsigned int 16-bit
42.121	Grandeza 20	Unsigned int 16-bit

Revisão 1.1 Outubro/2025

Não é necessário que o usuário faça a configuração de todas as 20 grandezas.

O medidor permite a configuração de 1 a 20 grandezas elétricas. A seleção da grandeza elétrica é feita através do registro que se quer gravar (ver tabela de Input Registers).

As grandezas que não forem selecionadas deverão ser programadas com o valor FFFFh.

A programação da memória de massa é feita através da função MODBUS 10h (WriteMultipleRegisters). Desta forma a programação de duas grandezas elétricas, tensão trifásica (registro 30.003) e corrente trifásica (registro 30.017), com intervalo de armazenamento de 1 minuto terá este formato:

Registro Inicial = 42.101 (IA)

IA = 1d = 1h

G1 = tensão trifásica = 30.003 - 30.001 = 2d = 2h

G2 = corrente trifásica = 30.017 - 30001 = 16d = 10h

G3 = FFFFh

Obs: A grandeza G3 foi desabilitada, portanto as grandezas G4 a G20 também serão automaticamente desabilitadas, pois se for escrito 0xFFFF em um dos registros, os registros seguintes são desabilitados, independentemente do valor dos registros. Portanto, no exemplo acima, foram configuradas somente duas grandezas.

REQUISIÇÃO

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
END	FLIN	REG	G QTD			вс	IA GF			GRANDEZAS ELÉTR				AS ELÉTRICAS									CRC	
END	FUN -	MSB	LSB	MSB	LSB	ВС	MSB	LSB	G1		G2		G3		G4		G5		G6		G7		LSB	MSB
25	10	08	34	00	08	10	00	01	00	02	00	10	FF	FF	00	14	00	16	00	18	00	1A	72	94

RESPOSTA

0	1	2	3	4	5	6	7
END	FUN	REG		QTD		CRC	
END	FUN	MSB	LSB	MSB	LSB	LSB	MSB
25	10	08	34	00	08	84	85

Observe que devemos iniciar a programação das grandezas através do G1, e as demais grandezas devem obrigatoriamente estar na sequência. Veja que G4 a G7 estão configurados com o valor de algumas grandezas, mas não terão efeito pois G3 está configurado com 0xFFFF.

A programação de grandezas elétricas apaga a memória de massa, devido ao sistema de armazenamento, que permite coletar mais ou menos dados em função da quantidade de grandezas programada.

Além das Grandezas Elétricas do Modo Instantâneo, como no exemplo mostrado acima, podemos também armazenar na memória de massa os valores de Energias, Energias por Fase, Delta de Energias, Demandas, Código de Erro, Contador das Entradas Digitais, Status das Entradas e Saídas Digitais, Status da Carga e Horímetro. Consultar a tabela de input registers para ver o registro correto da grandeza que deseja armazenar na memória de massa.

Após a configuração das grandezas que serão armazenadas, deve ser enviado o coil de Reset do instrumento (Coil 6).

7.4 Modo de Armazenamento da Memória de Massa (Circular/Linear)

O bit 9 do Holding Register 40.007 representa o tipo de armazenamento da Memória de Massa.

Revisão 1.1 Outubro/2025

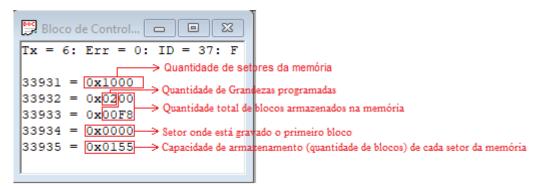
Holding Register	Modo de Armazenamento
40.007 (bit 9)	da Memória de Massa
0	Circular
1	Linear

Atenção: Se a configuração da Plataforma MQTT estiver habilitada (Holding Register 40.007. bit 13 = 1), o modo de armazenamento da memória de massa será sempre circular.

7.5 Procedimento de Leitura da Memória de Massa

O primeiro passo para fazer a leitura da memória de massa, é verificar o seu status. Para verificar se a memória de massa apresenta problemas é usada a função MODBUS 07h (ReadExceptionStatus). Este código de erro pode apresentar várias combinações. O código 80h indica falha no módulo de memória de massa. Mesmo apresentando falha é possível ler a memória de massa. Este erro interrompe o armazenamento de dados.

REQUISIÇÃO


32	07	55	12
END	FUNC	LSB	MSB
END	FLING	CRC	
0	1	2	3

RESPOSTA

11201 01	,,,,			
0	1	2	3	4
END	FUNC	RES	CRC	
END	FUNC	KES	LSB	MSB
32	07	80	D3	9F

Em seguida, é necessário fazer a leitura do bloco de controle da memória. O bloco de controle (Holding Register 33.931 a 33.935) contém as seguintes informações:

- Quantidade de Setores da Memória Flash (2 bytes). A quantidade de setores deve ser 4096 (0x1000).
- Quantidade de Grandezas programadas na Memória de Massa (1 byte). Esse valor pode estar entre 0 a 20 grandezas.
- Quantidade total de blocos armazenados na memória (3 bytes). Esse valor pode ser de 0 a 1675264.
- Setor onde está gravado o primeiro bloco (2 bytes).
- Capacidade de armazenamento (quantidade de blocos) de cada setor da memória (2 bytes). Todos os setores têm o mesmo tamanho. Essa capacidade de armazenamento vai depender de quantas grandezas estão programadas na memória de massa. Quanto maior o número de grandezas programadas na memória, menor a quantidade de blocos que serão armazenados.

Revisão 1.1 Outubro/2025

Assim, podemos calcular a quantidade total de blocos que podem ser armazenados na memória. No exemplo da imagem acima, temos as seguintes informações:

- Quantidade de Setores da Memória Flash = 4096.
- Quantidade de Grandezas programadas na Memória de Massa = 2.
- Quantidade total de blocos armazenados na memória = 248.
- Setor onde está gravado o primeiro bloco = Setor 0.
- Capacidade de armazenamento (quantidade de blocos) de cada setor da memória = 341.

Neste exemplo, a memória poderá armazenar até 1.396.736 blocos (341 * 4096).

Para o modo linear o setor inicial sempre será o setor 0, já para o modo circular o setor inicial pode ser qualquer setor da memória, devido ao sistema de renovação dos dados.

Abaixo, podemos ver um exemplo de leitura do Bloco de controle e da capacidade de armazenamento de blocos por setor:

Leitura do Bloco de Controle:

REQUISIÇÃO

	J. y. 10						
0	1	2	3	4	5	6	7
END	FLINI	RE	:G	QT	D	CI	RC
END	FUN	MSB	LSB	MSB	LSB	LSB	MSB
25	04	0F	5A	00	05	15	EA

RESPOSTA

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
END	FLIN	DC	0	ر د	CD		BGS		IN	11	C	A	C	RC
END	FUN	ВС	Q	or .	GP	MSB		LSB	MSB	LSB	MSB	LSB	LSB	MSB
25	04	0A	10	00	14	00	00	10	00	00	00	3E	E1	E0

Onde:

FUN..... Função Modbus BC..... Byte Count

QSF Quantidade de setores da memória flash (2 bytes)

BGS...... Total de blocos gravados (3 bytes) (Bloco Grandeza)

INI Setor onde está gravado o primeiro bloco (2 bytes)

CA...... Capacidade de armazenamento (em blocos) de casa setor da memória (2 bytes)

Na leitura do bloco de controle acima, podemos constatar que:

- A memória de massa possui 4096 setores (0x1000).
- A memória de massa possui 20 grandezas (0x14) programadas.
- A memória possui 16 blocos gravados (0x000010).
- O primeiro bloco está armazenado no Setor O (0x00).
- Capacidade de armazenamento de cada setor é de 62 blocos (0x003E)

Multiplicando-se a capacidade de armazenamento de cada setor com a quantidade de setores, concluímos que a memória pode armazenar até 253.952 blocos com 20 grandezas programadas.

Finalmente, a leitura dos dados armazenados na memória de massa pode ser feita. Para a leitura do conteúdo da memória de massa é usada a função MODBUS 14h (ReadFileRecord). Só é possível ler um bloco por vez. A quantidade de bytes recebida varia de acordo com a quantidade de grandezas elétricas programada na memória de massa.

Cada bloco lido contém as seguintes informações:

Revisão 1.1 Outubro/2025

- 5 Bytes para data.
- 4 Bytes para cada grandeza programada na memória de massa.
- 1 Byte do checksum.

IMPORTATE: A quantidade de registros solicitada é a soma dos bytes dividido por 2. Se for programada 1 grandeza na memória de massa o valor QTD será:

$$QTD = \frac{5 \text{ bytes de data} + (4 \text{ bytes x 1 grandeza}) + 1 \text{ byte de checksum}}{2} = 5$$

Se forem programadas 10 grandezas na memória de massa o valor QTDE será:

$$QTD = \frac{5 \text{ bytes de data} + (4 \text{ bytes x 10 grandezas}) + 1 \text{ byte de checksum}}{2} = 23$$

O formato de todas as grandezas elétricas, valores mínimos e valores máximos será Ponto Flutuante 32-bit.

Abaixo, um exemplo de leitura do bloco 0, setor 0 com 10 grandezas armazenadas na memória:

REQUISIÇÃO

0	1	2	3	4	5	6	7	8	9	10	11
END	ELINI	D.C	DT	SE	T	BL	.C	Q	ſD	CF	₹C
END	FUN	ВС	ΚI	MSB	LSB	MSB	LSB	MSB	LSB	LSB	MSB
25	14	07	06	00	00	00	00	00	17	39	96

RESPOSTA

			INES	0317																						
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
	EN	FUN	RDL	FRL	RT		DAT	A E H	ORA			(G1			(<u>52</u>			(33			(3 4	
	D	. 014	KDL				D/ (1/		010		F2	F1	F0	EXP	F2	F1	F0	EXP	F2	F1	F0	EXP	F2	F1	F0	EXP
Ī	25	14	30	2F	6	43	24	54	84	22	0	63	4D	43	0	FA	85	3D	0	0	0	0	0	5E	17	40

26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52
	(3 5			C	<u> 6</u>			G	3 7			C	86			(3 9			G	10		CS	Cl	RC
F2	F1	F0	EXP	F2	F1	F0	EXP	F2	F1	FO	EXP	F2	F1	F0	EXP	F2	F1	F0	EXP	F2	F1	F0	EXP			SB ISB
0	EO	1D	40	0	8D	1D	40	0	EE	6F	42	0	4A	0A	C1	0	DC	AC	C1	0	2D	ВА	41	11	D1	Α0

Requisição:

FUN..... Função

BC..... Byte Count (1 byte)

RT..... Reference type (1 byte)

SET Número do setor inicial (2 bytes)

BLC...... Número do Bloco requisitado (2 bytes)

QTD...... Número de registros a ser lido (2 bytes)

Revisão 1.1 Outubro/2025

Resposta:

FUN..... Função

RDL...... Register Data Length (1 byte)
FRL.... File Resp. Length (1 byte)
RT.... Reference type (1 byte)

Leitura de Data e Hora:

Os bytes 5 a 9 contém as informações de data e hora das grandezas elétrica gravadas na memória de massa compactadas em cinco bytes. O mapa a seguir mostra a forma de compactação bit a bit. Esses valores estão no formato BCD.

BYTE	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0	
5	Χ	S6	S5	S4	S3	S2	S1	S0	S = SEG
6	Н5	N6	N5	N4	N3	N2	N1	N0	N = MIN / H = HOR
7	D5	D4	D3	H4	Н3	H2	H1	H0	H = HOR / D =
									DIA
8	M4	M3	M2	M1	M0	D2	D1	D0	D = DIA / M =
8									MES
9	Α7	A6	A5	A4	A3	A2	A1	A0	A = ANO

Portanto, os valores referentes à data e hora estão distribuídos da seguinte forma:

CAMPO	BYTE	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0	HEXA
SEG	5	X	1	0	0	0	0	1	1	43
MIN	6	0	0	1	0	0	1	0	0	24
HODA	6	0	0	0	1	0	0	1	0	1.1
HORA	7	0	1	0	1	0	1	0	0	14
DIA	7	0	1	0	1	0	1	0	0	1.4
DIA	8	1	0	0	0	0	1	0	0	14
MÊS	8	1	0	0	0	0	1	0	0	10
ANO	9	0	0	1	0	0	0	1	0	22

Portanto, a estampa de tempo desse bloco é 14/10/22 as 14:24:43.

Leitura das Grandezas Elétricas:

Os bytes 10, 11, 12 e 13 contém o valor da Grandeza 1, armazenada na memória. Os bytes 14, 15, 16 e 17 o valor da Grandeza 2, e assim sucessivamente.

Como esses valores estão representados em formato ponto flutuante 32-bit, significa que: G1 = 205.389, G2 = 0.065, etc.

Leitura do Checksum:

O valor CS é a soma dos bytes do bloco lido "resposta" (bytes 5 a 49, no exemplo acima), formado por Data, Hora e Grandezas. Este valor é utilizado para verificar se a resposta enviada pelo medidor foi corrompida. Faça a soma destes valores e compare com o byte CS. Se forem iguais, o dado recebido está correto. Exemplo:

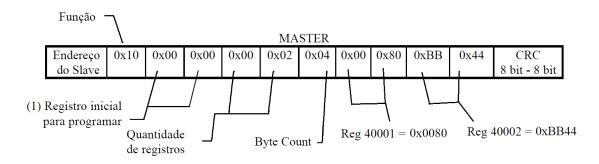
 $CS = 43 + 24 + 54 + 84 + 22 + 0 + 63 + 4D + 43 + 0 + FA + 85 + 3D + 0 + 0 + 0 + 0 + 0 + 0 + 0 + E + 17 + 40 + 0 + E0 + 1D + 40 + 0 + 8D + 1D + 40 + 0 + E + 6F + 42 + 0 + 4A + 0A + C1 + 0 + DC + AC + C1 + 0 + 2D + BA + 41 = 0 \times 0D11.$

CS = 11.

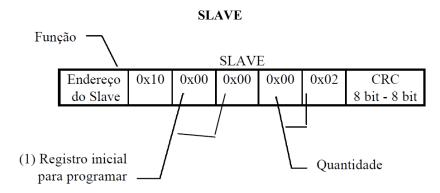
Resumindo, para fazer a leitura da Memória de Massa basta seguir os seguintes passos:

Revisão 1.1 Outubro/2025

Fazer a leitura do bloco de controle e verificar quantas grandezas estão programadas na memória de massa.


Além disso, ler do bloco de controle quantos blocos já foram gravados na memória de massa. Ainda no bloco de controle, ver em qual setor está armazenado o primeiro bloco. Depois disso, verificar qual é a capacidade de armazenamento de cada setor da memória. A partir daí, podemos fazer a leitura de todos os blocos já armazenado através da Função Read File Record (0x14), pois de posse das informações citadas acima, sabemos exatamente quantos blocos temos que ler de cada setor.

Revisão 1.1 Outubro/2025


8. PRESET MULTIPLE REGISTER (16)

Esta função é utilizada para programar múltiplos holding registers. Exemplificando, a programação da constante TC utilizaria esta função, pois este parâmetro ocupa mais de um registro. Abaixo, exemplo de programação dos registros 40001 e 40002 (TP). Os frames desta função para dispositivos master e slave são:

MASTER

(1) O registro para programar é obtido removendo o indicativo (número 4) e subtraindo o resultado por 1. No exemplo, o registro 40001 (decimal) é transmitido como 0x0000 (hexadecimal): 40001 = 0001 = (0001 - 1) = 0000 = 0x0000 hexadecimal. Na sequência, é necessário informar a quantidade de registros que serão programados e também o número de bytes equivalente. Os 4 bytes posteriores são preenchidos com o valor de interesse, codificado em ponto flutuante.

No exemplo acima o **master** programou os registros referentes ao TP (40001 e 40002) como 1500 (IEEE 32-bit float pointing = 0x0080BB44).

Atenção: O frame transmitido pelo master não deve exceder 29 bytes.

Revisão 1.1 Outubro/2025

9. REPORT SLAVE ID (17)

Esta função permite identificar um modelo de medidor na rede, através de um código conhecido. Abaixo frames de mestre e escravo:

	MASTE	R
Slave	0x11	CRC
Address		8 bit - 8 bit

α	A .	т	71
\	∠∆	٠,	/ H

Endereço	0x11	Byte	CÓDIGO	ON /	XX	XX	CRC
do Slave		Count		OFF			

Onde:

Byte Count = sempre 0x04

Código = Código do Dispositivo, Exemplos: 96 – Mult- 120, 90 – Mult-K

ON/OFF = Versão Especial = Para as versões padrão, retorna **FF**. Para versões especiais, retorna

complemento. Exemplo: 92 13 - Mult-K Plus E-13

XX XX = Reservado

10. CONFIG ADDRESS (0/0X42)

Esta função permite configuração do endereço Modbus de um dispositivo, utilizando seu número de série como referência. Os endereços podem ser configurados de 1 a 247, sendo que cada peça deve assumir um valor exclusivo, ou seja, não devem existir endereços repetidos em uma rede RS-485.

Antes de realizar a modificação, pode-se utilizar a função "7" para identificar se o endereço que se deseja programar já está presente na rede. Para isso, na composição do frame da função "7", deve-se inserir o valor de interesse. Se não houver resposta, é sinal que o endereço escolhido não está sendo utilizado e pode ser configurado.

A seguir, conceito e exemplo de utilização:

MASTER

0x00	0x42	Número de Série do Dispositivo	Novo Endereço	CRC
		8 bit - 8 bit - 8 bit - 8 bit	8 bit	8 bit - 8 bit

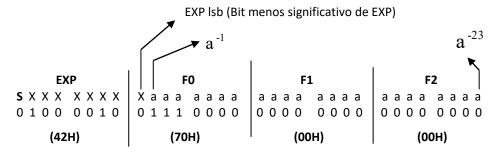
No exemplo abaixo, a peça possui número de série 21000 e foi configurada com endereço "100".

MASTER

- 1					
	0x00	0x42	0x00 0x00 0x52 0x08	0x64	CRC

O uso desta função não gera frame de resposta.

Revisão 1.1 Outubro/2025


11. <u>CONVERSÃO IEE-754 FLOAT POINT 32-BIT</u> PARA DECIMAL

EXP = Expoente;

F0, F1 e F2 = Mantissa, sendo F0 o byte mais significativo (MSB)

Exemplo: Supondo o valor 60,0 teremos F2 = **00H**, F1 = **00H**, F0 = **70H** e EXP = **42H**

Cálculo: $A = (S) (2^e . f)$

Valor Fixo

$$f = 2^{0} + a^{-1} + a^{-2} + a^{-3} + a^{-4} + a^{-5} + a^{-6} ... a^{-23}$$

$$f = 2^{0} + 2^{-1} + 2^{-2} + 2^{-3} + 0^{-4} + 0^{-5} + 0^{-6} ... 0^{-23}$$

$$f = 1 + 0.5 + 0.25 + 0.125$$

Sinal: Se S = 0 então valor é positivo (+), se S = 1 então valor é negativo (-)

$$A = (S) (2^5 . 1,875)$$

 $\therefore A = (+) (32 . 1,875) = 60,0$

Caso especial

∴ f = 1,875

Número	F2	F1	F0	EXP
0,0 (Zero)	00H	00H	00H	00H

Exemplos de equivalência entre um número decimal e sua representação em ponto flutuante

Número	F2	F1	FO	EXP
1500,0	00H	80H	BBH	44H
60,0	00H	00H	70H	42H
10.42	52H	B8H	26H	41H